• PLoS medicine · Aug 2010

    Comparative Study

    Moving from data on deaths to public health policy in Agincourt, South Africa: approaches to analysing and understanding verbal autopsy findings.

    • Peter Byass, Kathleen Kahn, Edward Fottrell, Mark A Collinson, and Stephen M Tollman.
    • Umeå Centre for Global Health Research, Department of Public Health and Clinical Medicine, Umeå University, Sweden. peter.byass@epiph.umu.se
    • PLoS Med. 2010 Aug 17; 7 (8): e1000325.

    BackgroundCause of death data are an essential source for public health planning, but their availability and quality are lacking in many parts of the world. Interviewing family and friends after a death has occurred (a procedure known as verbal autopsy) provides a source of data where deaths otherwise go unregistered; but sound methods for interpreting and analysing the ensuing data are essential. Two main approaches are commonly used: either physicians review individual interview material to arrive at probable cause of death, or probabilistic models process the data into likely cause(s). Here we compare and contrast these approaches as applied to a series of 6,153 deaths which occurred in a rural South African population from 1992 to 2005. We do not attempt to validate either approach in absolute terms.Methods And FindingsThe InterVA probabilistic model was applied to a series of 6,153 deaths which had previously been reviewed by physicians. Physicians used a total of 250 cause-of-death codes, many of which occurred very rarely, while the model used 33. Cause-specific mortality fractions, overall and for population subgroups, were derived from the model's output, and the physician causes coded into comparable categories. The ten highest-ranking causes accounted for 83% and 88% of all deaths by physician interpretation and probabilistic modelling respectively, and eight of the highest ten causes were common to both approaches. Top-ranking causes of death were classified by population subgroup and period, as done previously for the physician-interpreted material. Uncertainty around the cause(s) of individual deaths was recognised as an important concept that should be reflected in overall analyses. One notably discrepant group involved pulmonary tuberculosis as a cause of death in adults aged over 65, and these cases are discussed in more detail, but the group only accounted for 3.5% of overall deaths.ConclusionsThere were no differences between physician interpretation and probabilistic modelling that might have led to substantially different public health policy conclusions at the population level. Physician interpretation was more nuanced than the model, for example in identifying cancers at particular sites, but did not capture the uncertainty associated with individual cases. Probabilistic modelling was substantially cheaper and faster, and completely internally consistent. Both approaches characterised the rise of HIV-related mortality in this population during the period observed, and reached similar findings on other major causes of mortality. For many purposes probabilistic modelling appears to be the best available means of moving from data on deaths to public health actions. Please see later in the article for the Editors' Summary.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.