• Spine J · Dec 2013

    Intraoperative assessment of human spinal cord perfusion using near infrared spectroscopy with indocyanine green tracer technique.

    • Amir Reza Amiri, Cheong Hung Lee, Terence S Leung, Michael Hetreed, Michael D Craggs, and Adrian T H Casey.
    • Spinal Injury Unit, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, United Kingdom. Electronic address: amir.r.amiri@googlemail.com.
    • Spine J. 2013 Dec 1; 13 (12): 1818-25.

    Background ContextDespite the significant interest in the assessment of human cerebral perfusion, investigations into human spinal cord perfusion (SCP) are scarce. Current intraoperative monitoring of spinal cord relies on the assessment of neural conduction as a surrogate for SCP. However, there are various inherent limitations associated with the use of these techniques. Near infrared spectroscopy (NIRS) has been successfully used for monitoring and assessment of human cerebral perfusion and has shown promising results in intraoperative assessment of SCP in animal models.PurposeThe aim of this study was to investigate whether it is possible to monitor physiological changes in human SCP intraoperatively using NIRS with indocyanine green (ICG) tracer technique. We used this technique to calculate the human spinal cord carbon dioxide (CO₂) reactivity index. In addition, we investigated whether the lamina causes significant attenuation of NIRS signals.Study Design/SettingIntraoperative human experimental study.Patient SampleEighteen patients undergoing elective posterior cervical spine surgery.Outcome MeasuresCarbon dioxide reactivity of human SCP.MethodsNine patients underwent transdural assessment of SCP, with an additional nine patients undergoing translaminar measurements. Patients' SCP was continuously monitored using an NIRO-500 NIRS monitor via a set of purpose built optodes. Their arterial ICG concentration was simultaneously assessed using a pulse dye densitometer. Patients' end-tidal CO₂ was gradually increased by 7.5 mm Hg and then returned back to baseline. Three sets of measurements were taken: baseline, hypercapnic, and return to baseline.ResultsAfter hypercapnia, SCP increased by a mean of 57.2 ± 23.3% in the transdural group and 46.6 ± 36.3% in the translaminar group. Carbon dioxide reactivity index was 7.6 ± 3.2%ΔSCP/mm Hg in the transdural group and 6.4 ± 5.3 %ΔSCP/mm Hg in the translaminar group. There was no significant difference in the increase in SCP (p=.475) or the CO₂ reactivity index (p=.581) observed between the transdural and the translaminar groups.ConclusionsIntraoperative NIRS with ICG tracer technique can identify an increase in the SCP in response to hypercapnia. It is possible to use this technique for monitoring SCP over the dura and the lamina. This technique could potentially be used to provide insight in to the pathophysiology and autoregulation of commonly acquired spinal cord conditions. Further research assessing the use of NIRS for monitoring of SCP is required.Copyright © 2013 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.