• Shock · Aug 2022

    Impact of Different Ventilation Strategies on Gas Exchanges and Circulation During Prolonged Mechanical Cardio-Pulmonary Resuscitation In A Porcine Model.

    • Caroline Fritz, Deborah Jaeger, Yun Luo, Emilie Lardenois, Bilal Badat, Florian Eric Roquet, Marceau Rigollot, Antoine Kimmoun, N 'Guyen Tran, RichardJean-Christophe MJM, Tahar Chouihed, and Bruno Levy.
    • Shock. 2022 Aug 1; 58 (2): 119127119-127.

    AbstractBackground: Optimal ventilation during cardio-pulmonary resuscitation (CPR) is still controversial. Ventilation is expected to provide sufficient arterial oxygen content and adequate carbon dioxide removal, while minimizing the risk of circulatory impairment. The objective of the present study was to compare three ventilation strategies in a porcine model during mechanical continuous chest compressions (CCC) according to arterial oxygenation and hemodynamic impact. Method: Ventricular fibrillation was induced and followed by five no-flow minutes and thirty low-flow minutes resuscitation with mechanical-CCC without vasopressive drugs administration. Three groups of eight Landras pig were randomized according to the ventilation strategy: 1. Standard nonsynchronized volume-control mode (SD-group); 2. synchronized bilevel pressure-controlled ventilation (CPV-group); 3. continuous insufflation with Boussignac Cardiac-Arrest Device (BC-group). We assessed 1. arterial blood gases, 2. macro hemodynamics, 3. tissular cerebral macro and micro-circulation and 4. airway pressure, minute ventilation at baseline and every 5 minutes during the protocol. Results: Arterial PaO2 level was higher at each measurement time in SD-group (>200 mm Hg) compare to CPV-group and BC-group ( P < 0.01). In BC-group, arterial PaCO2 level was significantly higher (>90mm Hg) than in SD and CPV groups ( P < 0.01). There was no difference between groups concerning hemodynamic parameters, cerebral perfusion and microcirculation. Conclusion: Ventilation modalities in this porcine model of prolonged CPR influence oxygenation and decarboxylation without impairing circulation and cerebral perfusion. Synchronized bi-level pressure-controlled ventilation' use avoid hyperoxia and was as efficient as asynchronized volume ventilation to maintain alveolar ventilation and systemic perfusion during prolonged CPR.Copyright © 2021 by the Shock Society.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.