-
Yonsei medical journal · Nov 2021
Clinical TrialA Deep Learning Model with High Standalone Performance for Diagnosis of Unruptured Intracranial Aneurysm.
- Bio Joo, Hyun Seok Choi, Sung Soo Ahn, Jihoon Cha, So Yeon Won, Beomseok Sohn, Hwiyoung Kim, Kyunghwa Han, Hwa Pyung Kim, Jong Mun Choi, Sang Min Lee, Tae Gyu Kim, and Seung-Koo Lee.
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
- Yonsei Med. J. 2021 Nov 1; 62 (11): 1052-1061.
PurposeThis study aimed to investigate whether a deep learning model for automated detection of unruptured intracranial aneurysms on time-of-flight (TOF) magnetic resonance angiography (MRA) can achieve a target diagnostic performance comparable to that of human radiologists for approval from the Korean Ministry of Food and Drug Safety as an artificial intelligence-applied software.Materials And MethodsIn this single-center, retrospective, confirmatory clinical trial, the diagnostic performance of the model was evaluated in a predetermined test set. After sample size estimation, the test set consisted of 135 aneurysm-containing examinations with 168 intracranial aneurysms and 197 aneurysm-free examinations. The target sensitivity and specificity were set as 87% and 92%, respectively. The patient-wise sensitivity and specificity of the model were analyzed. Moreover, the lesion-wise sensitivity and false-positive detection rate per case were also investigated.ResultsThe sensitivity and specificity of the model were 91.11% [95% confidence interval (CI): 84.99, 95.32] and 93.91% (95% CI: 89.60, 96.81), respectively, which met the target performance values. The lesion-wise sensitivity was 92.26%. The overall false-positive detection rate per case was 0.123. Of the 168 aneurysms, 13 aneurysms from 12 examinations were missed by the model.ConclusionThe present deep learning model for automated detection of unruptured intracranial aneurysms on TOF MRA achieved the target diagnostic performance comparable to that of human radiologists. With high standalone performance, this model may be useful for accurate and efficient diagnosis of intracranial aneurysm.© Copyright: Yonsei University College of Medicine 2021.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.