• Bmc Infect Dis · Jul 2018

    Epidemiology of Ventilator-Associated Pneumonia, microbiological diagnostics and the length of antimicrobial treatment in the Polish Intensive Care Units in the years 2013-2015.

    • Michał Wałaszek, Anna Różańska, Marta Zofia Wałaszek, Jadwiga Wójkowska-Mach, and Polish Society of Hospital Infections Team.
    • Polish Society of Hospital Infections, Kraków, Poland.
    • Bmc Infect Dis. 2018 Jul 6; 18 (1): 308.

    BackgroundVentilator-associated pneumonia (VAP) is a common nosocomial infection in intensive care units (ICUs). The objective of this study was to describe the epidemiology and microbiology of VAP in Polish ICUs from 2013 to 2015, as well as to understand how these depended on the diagnostic methods used to identify VAP pathogens and the clinical strategy for VAP treatment.MethodsThis observational study was carried out in seven Polish adult ICUs. VAP surveillance was based on the European Healthcare-associated Infections Surveillance Network recommendations and was defined as pneumonia occurring more than 48 h after receiving mechanical ventilation, with symptom onset 3 days or more after the hospital stay. Depending on the microbiological diagnostic method, VAP cases were classified as PNEU-1 (positive quantitative culture from minimally contaminated lower respiratory tract specimen such as broncho-alveolar lavage, protected brush or distal protected aspirate) or other VAP cases.ResultsThe incidence of VAP was 8.0% and the incidence density: 12.3/1000 ventilator days. Microbiological diagnosis was made using PNEU-1 in 80 cases (39%); over the study duration, the proportion of cases diagnosed with PNEU-1 increased from 14 to 60% (p < 0.001). The predominant etiologic agents causing VAP were Enterobacteriaceae (32.6%) and non-fermenting Gram-negative bacteria (27.6%). The causative microbe varied significantly depending on the diagnostic method: in cases diagnosed using PNEU-1, Staphylococcus aureus (21.3%) and Klebsiella pneumoniae (12.5%) were the dominant organisms, whereas in other VAP cases, Acinetobacter baumannii (23.8%) was commonly observed. The length of antibiotic treatment in cases diagnosed with PNEU-1 was shorter than for other VAP cases (7.2 vs. 9.1 days, p < 0.005), as was the duration of hospitalization (49 vs. 51.8 days, p < 0.001). Antibiotic resistance was a particular concern for A.baumannii isolates, which were highly resistance to imipenem (70.6%) and meropenem or doripenem (52.9%). K. pneumoniae isolates demonstrated resistance to ampicillin (90.3%), ceftazidime (71.0%) and third-generation cephalosporins (74.2%).ConclusionA change over time was observed in the microbiological diagnostic methods used for patients with VAP. A. baumannii was observed mainly in VAP cases diagnosed using substandard methods (non-PNEU-1). The duration of treatment for VAP patients diagnosed properly using PNEU-1 was shorter.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…