• Clin Cancer Res · Dec 2016

    Observational Study

    Detection of Therapeutically Targetable Driver and Resistance Mutations in Lung Cancer Patients by Next-Generation Sequencing of Cell-Free Circulating Tumor DNA.

    • Jeffrey C Thompson, Stephanie S Yee, Andrea B Troxel, Samantha L Savitch, Ryan Fan, David Balli, David B Lieberman, Jennifer D Morrissette, Tracey L Evans, Joshua Bauml, Charu Aggarwal, John A Kosteva, Evan Alley, Christine Ciunci, Roger B Cohen, Stephen Bagley, Susan Stonehouse-Lee, Victoria E Sherry, Elizabeth Gilbert, Corey Langer, Anil Vachani, and Erica L Carpenter.
    • Division of Pulmonary, Allergy and Critical Care Medicine, Thoracic Oncology Group, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
    • Clin Cancer Res. 2016 Dec 1; 22 (23): 5772-5782.

    PurposeThe expanding number of targeted therapeutics for non-small cell lung cancer (NSCLC) necessitates real-time tumor genotyping, yet tissue biopsies are difficult to perform serially and often yield inadequate DNA for next-generation sequencing (NGS). We evaluated the feasibility of using cell-free circulating tumor DNA (ctDNA) NGS as a complement or alternative to tissue NGS.Experimental DesignA total of 112 plasma samples obtained from a consecutive study of 102 prospectively enrolled patients with advanced NSCLC were subjected to ultra-deep sequencing of up to 70 genes and matched with tissue samples, when possible.ResultsWe detected 275 alterations in 45 genes, and at least one alteration in the ctDNA for 86 of 102 patients (84%), with EGFR variants being most common. ctDNA NGS detected 50 driver and 12 resistance mutations, and mutations in 22 additional genes for which experimental therapies, including clinical trials, are available. Although ctDNA NGS was completed for 102 consecutive patients, tissue sequencing was only successful for 50 patients (49%). Actionable EGFR mutations were detected in 24 tissue and 19 ctDNA samples, yielding concordance of 79%, with a shorter time interval between tissue and blood collection associated with increased concordance (P = 0.038). ctDNA sequencing identified eight patients harboring a resistance mutation who developed progressive disease while on targeted therapy, and for whom tissue sequencing was not possible.ConclusionsTherapeutically targetable driver and resistance mutations can be detected by ctDNA NGS, even when tissue is unavailable, thus allowing more accurate diagnosis, improved patient management, and serial sampling to monitor disease progression and clonal evolution. Clin Cancer Res; 22(23); 5772-82. ©2016 AACR.©2016 American Association for Cancer Research.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.