• Beijing Da Xue Xue Bao · Jun 2021

    [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning].

    • Y Lin, J Y Wu, K Lin, Y H Hu, and G L Kong.
    • National Institute of Health Data Science, Peking University, Beijing 100191, China.
    • Beijing Da Xue Xue Bao. 2021 Jun 18; 53 (3): 566-572.

    ObjectiveTo develop machine learning models for predicting intensive care unit (ICU) readmission using ensemble learning algorithms.MethodsA publicly accessible American ICU database, medical information mart for intensive care (MIMIC)-Ⅲ as the data source was used, and the patients were selected by the inclusion and exclusion criteria. A set of variables that had the predictive ability of outcome including demographics, vital signs, laboratory tests, and comorbidities of patients were extracted from the dataset. We built the ICU readmission prediction models based on ensemble learning methods including random forest, adaptive boosting (AdaBoost), and gradient boosting decision tree (GBDT), and compared the prediction performance of the machine learning models with a conventional Logistic regression model. Five-fold cross validation was used to train and validate the prediction models. Average sensitivity, positive prediction value, negative prediction value, false positive rate, false negative rate, area under the receiver operating characteristic curve (AUROC) and Brier score were used as performance measures. After constructing the prediction models, top 10 predictive variables based on importance ranking were identified by the model with the best discrimination.ResultsAmong these ICU readmission prediction models, GBDT (AUROC=0.858) had better performance than random forest (AUROC=0.827), and was slightly superior to AdaBoost (AUROC=0.851) in terms of AUROC. Compared with Logistic regression (AUROC=0.810), the discrimination of the three ensemble learning models was much better. The feature importance provided by GBDT showed that the top ranking variables included vital signs and laboratory tests. The patients with ICU readmission had higher mean arterial pressure, systolic blood pressure, diastolic blood pressure, and heart rate than the patients without ICU readmission. Meanwhile, the patients readmitted to ICU experienced lower urine output and higher serum creatinine. Overall, the patients having repeated admissions during their hospitalization showed worse heart function and renal function compared with the patients without ICU readmission.ConclusionThe ensemble learning based ICU readmission prediction models had better performance than Logistic regression model. Such ensemble learning models have the potential to aid ICU physicians in identifying those patients with high risk of ICU readmission and thus help improve overall clinical outcomes.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.