• Resp Res · Sep 2020

    Artificial intelligence accuracy in detecting pathological breath sounds in children using digital stethoscopes.

    • Ajay Kevat, Anaath Kalirajah, and Robert Roseby.
    • Department of Paediatrics, Monash University, Melbourne, Australia. ajaykevat@gmail.com.
    • Resp Res. 2020 Sep 29; 21 (1): 253.

    BackgroundManual auscultation to detect abnormal breath sounds has poor inter-observer reliability. Digital stethoscopes with artificial intelligence (AI) could improve reliable detection of these sounds. We aimed to independently test the abilities of AI developed for this purpose.MethodsOne hundred and ninety two auscultation recordings collected from children using two different digital stethoscopes (Clinicloud™ and Littman™) were each tagged as containing wheezes, crackles or neither by a pediatric respiratory physician, based on audio playback and careful spectrogram and waveform analysis, with a subset validated by a blinded second clinician. These recordings were submitted for analysis by a blinded AI algorithm (StethoMe AI) specifically trained to detect pathologic pediatric breath sounds.ResultsWith optimized AI detection thresholds, crackle detection positive percent agreement (PPA) was 0.95 and negative percent agreement (NPA) was 0.99 for Clinicloud recordings; for Littman-collected sounds PPA was 0.82 and NPA was 0.96. Wheeze detection PPA and NPA were 0.90 and 0.97 respectively (Clinicloud auscultation), with PPA 0.80 and NPA 0.95 for Littman recordings.ConclusionsAI can detect crackles and wheeze with a reasonably high degree of accuracy from breath sounds obtained from different digital stethoscope devices, although some device-dependent differences do exist.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…