-
- Fanny Lepeytre, Marc Ghannoum, Hélène Ammann, François Madore, Stéphan Troyanov, Rémi Goupil, and Josée Bouchard.
- Division of Nephrology, Department of Medicine, Hôpital du Sacré-Cœur de Montréal, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.
- Am. J. Kidney Dis. 2017 Sep 1; 70 (3): 347-356.
BackgroundThe osmolal gap has been used for decades to screen for exposure to toxic alcohols. However, several issues may affect its reliability. We aimed to develop equations to calculate osmolarity with improved performance when used to screen for intoxication to toxic alcohols.Study DesignRetrospective cohort study.Setting & Participants7,525 patients undergoing simultaneous measurements of osmolality, sodium, potassium, urea, glucose, and ethanol or undergoing similar measurements performed within 30 minutes of a measurement of toxic alcohol levels at a single tertiary-care center from April 2001 to June 2016. Patients with detectable toxic alcohols were excluded.Index TestEquations to calculate osmolarity using multiple linear regression.OutcomesThe performance of new equations compared with published equations developed to calculate osmolarity, and to diagnose toxic alcohol intoxications more accurately.ResultsWe obtained 7,525 measurements, including 100 with undetectable toxic alcohols. Among them, 3,875 had undetectable and 3,650 had detectable ethanol levels. In the entire cohort, the best equation to calculate osmolarity was 2.006×Na + 1.228×Urea + 1.387×Glucose + 1.207×Ethanol (values in mmol/L, R2=0.96). A simplified equation, 2.0×Na + 1.2×Urea + 1.4×Glucose + 1.2×Ethanol, had a similar R2 with 95% of osmolal gap values between -10.9 and 13.8. In patients with undetectable ethanol concentrations, the range of 95% of osmolal gap values was narrower than previous published formulas, and in patients with detectable ethanol concentrations, the range was narrower or similar. We performed a subanalysis of 138 cases for which both the toxic alcohol concentration could be measured and the osmolal gap could be calculated. Our simplified equation had superior diagnostic accuracy for toxic alcohol exposure.LimitationsSingle center, no external validation, limited number of cases with detectable toxic alcohols.ConclusionsIn a large cohort, coefficients from regression analyses estimating the contribution of glucose, urea, and ethanol were higher than 1.0. Our simplified formula to precisely calculate osmolarity yielded improved diagnostic accuracy for suspected toxic alcohol exposures than previously published formulas.Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.