• Am. J. Physiol. Gastrointest. Liver Physiol. · Mar 2019

    Histamine-mediated potentiation of transient receptor potential (TRP) ankyrin 1 and TRP vanilloid 4 signaling in submucosal neurons in patients with irritable bowel syndrome.

    • D Balemans, J Aguilera-Lizarraga, M V Florens, P Jain, A Denadai-Souza, M F Viola, Y A Alpizar, S Van Der Merwe, P Vanden Berghe, K Talavera, S Vanner, M M Wouters, and G E Boeckxstaens.
    • Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, Katholieke Universiteit Leuven , Leuven , Belgium.
    • Am. J. Physiol. Gastrointest. Liver Physiol. 2019 Mar 1; 316 (3): G338-G349.

    AbstractPreviously, we showed histamine-mediated sensitization of transient receptor potential (TRP) vanilloid 1 (TRPV1) in patients with irritable bowel syndrome (IBS). Sensitization of TRP ankyrin 1 (TRPA1) and TRP vanilloid 4 (TRPV4) are also involved in aberrant pain perception in preclinical models of somatic pain. Here, we hypothesize that in parallel with TRPV1, histamine sensitizes TRPA1 and TRPV4, contributing to increased visceral pain in patients with IBS. Rectal biopsies were collected from patients with IBS and healthy subjects (HS) to study neuronal sensitivity to TRPA1 and TRPV4 agonists (cinnamaldehyde and GSK1016790A) using intracellular Ca2+ imaging. In addition, the effect of supernatants of rectal biopsies on patients with IBS and HS was assessed on TRPA1 and TRPV4 responses in murine dorsal root ganglion (DRG) sensory neurons. Finally, we evaluated the role of histamine and histamine 1 receptor (H1R) in TRPA1 and TRPV4 sensitization. Application of TRPA1 and TRPV4 agonists evoked significantly higher peak amplitudes and percentage of responding submucosal neurons in biopsies of patients with IBS compared with HS. In HS, pretreatment with histamine significantly increased the Ca2+ responses to cinnamaldehyde and GSK1016790A, an effect prevented by H1R antagonism. IBS supernatants, but not of HS, sensitized TRPA1 and TRPV4 on DRG neurons. This effect was reproduced by histamine and prevented by H1R antagonism. We demonstrate that the mucosal microenvironment in IBS contains mediators, such as histamine, which sensitize TRPV4 and TRPA1 via H1R activation, most likely contributing to increased visceral pain perception in IBS. These data further underscore H1R antagonism as potential treatment for IBS. NEW & NOTEWORTHY We provide evidence for histamine-mediated transient receptor potential (TRP) ankyrin 1 and TRP vanilloid 4 sensitization in irritable bowel syndrome (IBS) via histamine 1 receptor (H1R) activation, most likely contributing to increased visceral pain perception. Our results reveal a general role of sensory TRP channels as histamine effectors in the pathophysiology of IBS and provide novel mechanistic insights into the therapeutic potential of H1R antagonism in IBS.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.