• Brain Nerve · Aug 2011

    Review

    [Functional analysis of the thalamocortical pathways in eye movements].

    • Jun Kunimatsu and Masaki Tanaka.
    • Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan.
    • Brain Nerve. 2011 Aug 1; 63 (8): 871-7.

    AbstractAlthough the roles of the thalamocortical pathways in somatic movements are well documented, their roles in eye movements have only recently been examined. The oculomotor-related areas in the frontal cortex receive inputs from the basal ganglia and the cerebellum via the thalamus. Consistent with this, neurons in the paralaminar part of the ventrolateral (VL), ventroanterior (VA), and mediodorsal (MD) nuclei and those in the intralaminar nuclei exhibit a variety of eye movement-related responses. To date, the thalamocortical pathways are known to play at least 2 roles in eye movements. First, they are involved in the generation of volitional, but not reactive, saccades. Thalamic neurons discharge during anti-saccades, which are known to be impaired in several neurological and psychiatric disorders, such as Parkinson's disease, attention deficit/hyperactivity disorder, and schizophrenia. In addition, neurons in the thalamus also exhibit a gradual increase in firing rate that predicts the timing of self-initiated saccades. Recent inactivation experiments have established the causal roles of these thalamic signals in the generation of volitional saccades. Second, the thalamocortical pathways transmit the efference copy signals for eye movements. During inactivation of the MD thalamus, which relays signals from the superior colliculus to the frontal eye field (FEF), the accuracy of the saccade is reduced in tasks requiring efference copy signals. In addition, inactivation of the same pathways reduces the predictive visual response associated with saccades in neurons in the FEF. Moreover the VL thalamus has been reported to play a role in monitoring smooth pursuit. While the functional analysis of thalamocortical pathways in eye movements is just a beginning, the anatomical data suggest their important roles. Analysis of eye movement control may shed light on the functions of the thalamocortical pathways in general, and may reveal the neural mechanisms of cerebro-cerebellar, cerebro-basal ganglia, and cerebro-thalamic interactions.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…