• J. Heart Lung Transplant. · Jan 1995

    Load-independent analysis of a pulsatile right ventricular assist device.

    • C H Meyers, D S Peterseim, R Uppal, A M Jayawant, K A Campbell, D C Sabiston, P K Smith, and P Van Trigt.
    • Department of Surgery, Duke University Medical Center, Durham, N.C. 27710, USA.
    • J. Heart Lung Transplant. 1995 Jan 1;14(1 Pt 1):177-85.

    BackgroundRight ventricular assist devices are becoming increasingly used as both a bridge to heart transplantation and as a means of temporary support after cardiopulmonary bypass. There has also been a resurgence of interest in pulsatile devices fueled by anecdotal, clinical reports. However, a load-independent analysis of biventricular function after right ventricular assistance comparing a pulsatile versus a continuous-flow right ventricular assist device has not been performed, and we hypothesize that a pulsatile device is less detrimental to cardiac function than a conventional, nonpulsatile pump.MethodsSixteen dogs (20 to 25 kg) were instrumented through a median sternotomy for placement of left ventricular and right ventricular epicardial dimension transducers in the major, minor, and septal-free wall axes. Intracavitary micromanometers were placed in both ventricles as well. Baseline pressure-dimension data were collected, and the right atrium and pulmonary artery were cannulated. Right ventricular bypass with the use of a pneumatically driven pulsatile right ventricular assist device (SV = 60 ml; n = 7) or a conventional continuous-flow centrifugal right ventricular assist device (n = 9) was instituted for a 4-hour duration. Animals were then weaned from right ventricular support and decannulated. After bypass, biventricular function data were then collected. The load-insensitive stroke work-end diastolic volume relationship known as preload recruitable stroke work was derived and expressed as a fraction of baseline function along with conventional hemodynamic indexes, cardiac output, and pulmonary vascular resistance.ResultsResults of this analysis show no significant benefit to either right ventricular or left ventricular function (right ventricular preload recruitable stroke work index: 0.863 +/- 0.3 [pulsatile] versus 0.849 +/- 0.2 [continuous], left ventricular preload recruitable stroke work index: 0.880 +/- 0.4 [pulsatile] versus 0.821 +/- 0.3 [continuous] after pulsatile right ventricular support. Likewise, cardiac output (1.4 +/- 0.1 [pulsatile] versus 1.5 +/- 0.2 [continuous] L/min) and pulmonary vascular resistance (4.8 +/- 1.0 [pulsatile] versus 3.2 +/- 1.1 [continuous] Wood Units) were not significantly different in either study group.ConclusionsWe conclude from these data that pneumatically driven pulsatile right ventricular assist devices provide no additional benefit to myocardial performance beyond that of conventional, nonpulsatile pumps. Further studies investigating a speculative benefit from pulsatile circulatory support are necessary to further define a potential role for these novel devices.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.