• Pain · Aug 2022

    Capsaicin-induced depolymerization of axonal microtubules mediates analgesia for trigeminal neuropathic pain.

    • Vipin Arora, Tingting Li, Sinu Kumari, Sheng Wang, Jamila Asgar, and Man-Kyo Chung.
    • Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, Center to Advance Chronic Pain Research, the University of Maryland Baltimore, Baltimore, MD, United States.
    • Pain. 2022 Aug 1; 163 (8): 147914881479-1488.

    AbstractCapsaicin is a specific agonist of transient receptor potential vanilloid 1 (TRPV1), which is enriched in nociceptors. Capsaicin not only produces acute pain but also leads to long-lasting analgesia in patients with chronic pain. Although capsaicin-induced TRPV1 and Ca 2+ /calpain-dependent ablation of axonal terminals is necessary for long-lasting analgesia, the mechanisms underlying capsaicin-induced ablation of axonal terminals and its association with analgesia are not fully understood. Microtubules are composed of tubulin polymers and serve as a main axonal cytoskeleton maintaining axonal integrity. In this study, we hypothesized that capsaicin would increase the depolymerization of microtubules and lead to axonal ablation and analgesia for trigeminal neuropathic pain. Paclitaxel, a microtubule stabilizer, decreased capsaicin-induced ablation of axonal terminals in time-lapsed imaging in vitro. Capsaicin increases free tubulin in dissociated sensory neurons, which was inhibited by paclitaxel. Consistently, subcutaneous injection of paclitaxel prevented capsaicin-induced axonal ablation in the hind paw skin. Capsaicin administration to the facial skin produced analgesia for mechanical hyperalgesia in mice with chronic constriction injury of the infraorbital nerve, which was prevented by the coadministration of paclitaxel and capsaicin. Whole-mount staining of facial skin showed that paclitaxel reduced capsaicin-induced ablation of peptidergic afferent terminals. Despite the suggested involvement of TRPV1 Ser801 phosphorylation on microtubule integrity, capsaicin-induced analgesia was not affected in TRPV1 S801A knock-in mice. In conclusion, capsaicin-induced depolymerization of axonal microtubules determined capsaicin-induced ablation of nociceptive terminals and the extent of analgesia. Further understanding of TRPV1/Ca 2+ -dependent mechanisms of capsaicin-induced ablation and analgesia may help to improve the management of chronic pain.Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the International Association for the Study of Pain.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…