• Beijing Da Xue Xue Bao · Oct 2021

    [Comparison of pulse pressure variation, stroke volume variation, and plethysmographic variability index in pediatric patients undergoing craniotomy].

    • Y F Liu, L L Song, M W Xing, L X Cai, and D X Wang.
    • Department of Anesthesiology, Peking University First Hospital, Beijing 100034, China.
    • Beijing Da Xue Xue Bao. 2021 Oct 18; 53 (5): 946-951.

    ObjectiveTo compare well-known preload dynamic parameters intraoperatively including stroke volume variation (SVV), pulse pressure variation (PPV), and plethysmographic variability index (PVI) in children who underwent craniotomy for epileptogenic lesion excision.MethodsA total of 30 children aged 0 to 14 years undergoing craniotomy for intracranial epileptogenic lesion excision were enrolled. During surgery, we measured PPV, SVV (measured by the Flotrac/Vigileo device), and PVI (measured by the Masimo Radical-7 monitor) simultaneously and continuously. Preload dynamic parameter measurements were collected at predefined steps: after induction of anesthesia, during opening the skull, intraoperative electroencephalogram monitoring, excision of epileptogenic lesion, skull closure, at the end of the operation. After exclusion of outliers, agreement among SVV, PPV, and PVI was assessed using repeated measures of Bland-Altman approach. The 4-quadrant and polar plot techniques were used to assess the trending ability among the changes in the three parameters.ResultsThe mean SVV, PPV, and PVI were 8%±2%, 10%±3%, and 15%±7%, respectively during surgery. We analyzed a total of 834 paired measurements (3 to 8 data sets for each phase per patient). Repeated measures Bland-Altman analysis identified a bias of -2.3 and 95% confidence intervals between -1.9 and -2.7 (95% limits of agreement between -6.0 and 1.5) between PPV and SVV, showing significant correlation at all periods. The bias between PPV and PVI was -5.0 with 95% limits of agreement between -20.5 and 10.5, and that between SVV and PVI was -7.5 with 95% limits of agreement between -22.7 and 7.8, both not showing significant correlation. Reflected by 4-quadrant plots, the con-cordance rates showing the trending ability between the changes in PPV and SVV, PPV and PVI, SVV and PVI were 88.6%, 50.4%, and 50.1%, respectively. The concordance rate between PPV and SVV was higher (92.7%) in children aged less than 3 years compared with those aged 3 and more than 3 years. The mean angular bias, radial limits of agreement, and angular concordance rate in the polar analysis were not clinically acceptable in the changes between arterial pressure waveform-based parameters and volume-based PVI (PPV vs. PVI: angular mean bias 8.4°, angular concordance rate 29.9%; SVV vs. PVI: angular mean bias 2.4°, angular concordance rate 29.1%). There was a high concordance between the two arterial pressure waveform-based parameters reflected by the polar plot (angular mean bias -0.22°, angular concordance rate 86.6%).ConclusionPPV can be viewed as a surrogate for SVV, especially in children aged less than 3 years. The agreement between arterial pressure waveform-based preload parameters (PPV and SVV) and PVI is poor and these two should not be considered interchangeable. Attempt to combine PVI and PPV for improving the anesthesiologist's ability to monitor cardiac preload in major pediatric surgery is warranted.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…