• Magn Reson Med · Dec 2007

    Morphing steady-state free precession.

    • O Bieri, S Patil, H H Quick, and K Scheffler.
    • MR Physics, Department of Medical Radiology, University of Basel, Basel, Switzerland. oliver.bieri@unibas.ch
    • Magn Reson Med. 2007 Dec 1; 58 (6): 1242-8.

    AbstractA novel concept for visualization of positive contrast originating from susceptibility-related magnetic field distortions is presented. In unbalanced steady-state free precession (SSFP) the generic, gradient-induced dephasing competes with local gradient fields generated by paramagnetic materials. Thus, within the same image, SSFP may morph its own appearance from unbalanced to balanced SSFP (bSSFP) as a result of local gradient compensation. In combination with low to very low flip angles, unbalanced SSFP signals are heavily suppressed, whereas bSSFP locally produces very high steady-state amplitudes at certain frequency offsets. As a result, bSSFP signals appear hyperintense on an almost completely dark background. In this study, the conceptual issues of local gradient compensation and frequency matching, as well as the feasibility of proper detection of marker materials for interventional MRI from hyperintense pixels locations, are evaluated both in vitro and in vivo. Signal dependencies of morphing SSFP on sequence parameters such as flip angle or repetition time are investigated theoretically and experimentally. In addition to passive tracking of interventional devices, morphing SSFP might also be a promising new concept for the generation of positive contrast from super-paramagnetic iron oxide (SPIO) particles in contrast-enhanced MRI as well as for particle tracking.(c) 2007 Wiley-Liss, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.