• Crit Care Explor · Apr 2021

    Accuracy for Mortality Prediction With Additive Biomarkers Including Interleukin-6 in Critically Ill Patients: A Multicenter Prospective Observational Study.

    • Ryo Yamamoto, Junichi Sasaki, Takayuki Shibusawa, Taka-Aki Nakada, Toshihiko Mayumi, Osamu Takasu, Kenichi Matsuda, Takashi Shimazui, Hiroki Otsubo, Yuto Teshima, Masakazu Nabeta, Takeshi Moriguchi, and Shigeto Oda.
    • Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan.
    • Crit Care Explor. 2021 Apr 1; 3 (4): e0387.

    ObjectivesSeveral inflammation markers have been reported to be associated with unfavorable clinical outcomes in critically ill patients. We aimed to elucidate whether serum interleukin-6 concentration considered with Sequential Organ Failure Assessment score can better predict mortality in critically ill patients.DesignA prospective observational study.SettingFive university hospitals in 2016-2018.PatientsCritically ill adult patients who met greater than or equal to two systemic inflammatory response syndrome criteria at admission were included, and those who died or were discharged within 48 hours were excluded.InterventionsInflammatory biomarkers including interleukin (interleukin)-6, -8, and -10; tumor necrosis factor-α; C-reactive protein; and procalcitonin were blindly measured daily for 3 days. Area under the receiver operating characteristic curve for Sequential Organ Failure Assessment score at day 2 according to 28-day mortality was calculated as baseline. Combination models of Sequential Organ Failure Assessment score and additional biomarkers were developed using logistic regression, and area under the receiver operating characteristic curve calculated in each model was compared with the baseline.Measurements And Main ResultsAmong 161 patients included in the study, 18 (11.2%) did not survive at day 28. Univariate analysis for each biomarker identified that the interleukin-6 (days 1-3), interleukin-8 (days 0-3), and interleukin-10 (days 1-3) were higher in nonsurvivors than in survivors. Analyses of 28-day mortality prediction by a single biomarker showed interleukin-6, -8, and -10 at days 1-3 had a significant discrimination power, and the interleukin-6 at day 3 had the highest area under the receiver operating characteristic curve (0.766 [0.656-0.876]). The baseline area under the receiver operating characteristic curve for Sequential Organ Failure Assessment score predicting 28-day mortality was 0.776 (0.672-0.880). The combination model using additional interleukin-6 at day 3 had higher area under the receiver operating characteristic curve than baseline (area under the receiver operating characteristic curve = 0.844, area under the receiver operating characteristic curve improvement = 0.068 [0.002-0.133]), whereas other biomarkers did not improve accuracy in predicting 28-day mortality.ConclusionsAccuracy for 28-day mortality prediction was improved by adding serum interleukin-6 concentration to Sequential Organ Failure Assessment score.Copyright © 2021 The Authors. Published by Wolters Kluwer Health, Inc. on behalf of the Society of Critical Care Medicine.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.