-
- Shuai Zhang, Jing Wang, Xianmei Qi, Xincao Tao, Wanmu Xie, Jun Wan, Ying H Shen, and Zhenguo Zhai.
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China; National Clinical Research Center for Respiratory Diseases, Beijing, China.
- Exp. Cell Res. 2021 Jan 1; 398 (1): 112392.
BackgroundThe proliferation of pulmonary arterial smooth muscle cells (PASMCs) and subsequent pulmonary vascular remodeling leads to pulmonary arterial hypertension (PAH). Understanding the underlying mechanisms and identifying molecules that can suppress PASMCs proliferation is critical for developing effective pharmacological treatment. We previously showed that plasminogen activator inhibitor-2 (PAI-2) inhibited human PASMC (hPASMCs) proliferation in vitro. However, its inhibitory effect on PAH remains to be determined, and the mechanism remains to be illustrated.MethodsWe compared serum PAI-2 levels between PAH patients and healthy controls, and examined the correlation between PAI-2 level and disease severity. In monocrotaline-induced PAH rats, we examined the effects of exogenous PAI-2 administration on pulmonary vascular remodeling and PAH development. The effect of PAI-2 and potential mechanisms was further examined in cultured hPASMCs.ResultsThe serum PAI-2 was decreased in PAH patients compared with controls. PAI-2 level was negatively correlated with mean pulmonary arterial pressure and estimated systolic pulmonary arterial pressure in ultrasonic cardiogram, while positively correlated with 6-min walking distance. In rats, administration of exogenous PAI-2 significantly reversed monocrotaline-induced PAH, as indicated by the decrease in right ventricle systolic pressure, right ventricular hypertrophy index and percent media thickness of pulmonary arterioles. Further mechanistic investigation in hPASMCs showed that PAI-2 inhibited cell proliferation by preventing the activation of PI3K/Akt and ERK pathways.ConclusionPAI-2 is downregulated in PAH patients. PAI-2 attenuates PAH development by suppressing hPASMCs proliferation via the inhibition of PI3K/Akt and ERK pathways. PAI-2 may serve as a potential biomarker and therapeutic target for PAH.Copyright © 2020 Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.