-
- Michael Wagner, Lukas Scheef, Jakob Jankowski, Marcel Daamen, Gunther Weyer, Markus Klingenberg, Julia Renner, Sara Mueckter, Britta Schürmann, Frank Musshoff, Hans H Schild, and Henning Boecker.
- Functional Neuroimaging Group, Department of Radiology, University of Bonn, Germany.
- Pain. 2012 Aug 1;153(8):1702-14.
AbstractEndurance exercise is known to promote sustained antinociceptive effects, and there is evidence that the reduction of pain perception mediated by exercise is driven by central opioidergic neurotransmission. To directly investigate the involved brain areas and the underlying neural mechanisms in humans, thermal heat-pain challenges were applied to 20 athletes during 4 separate functional magnetic resonance imaging (fMRI) scans, i.e., before and after 2 hours of running (exercise condition) and walking (control condition), respectively. Imaging revealed a reproducible pattern of distributed pain-related activation in all 4 conditions, including the mesial and lateral pain systems, and the periaqueductal gray (PAG) as a key region of the descending antinociceptive pathway. At the behavioral level, running as compared with walking decreased affective pain ratings. The influence of exercise on pain-related activation was reflected in a significant time × treatment interaction in the PAG, along with similar trends in the pregenual anterior cingulate cortex and the middle insular cortex, where pain-induced activation levels were elevated after walking, but decreased or unchanged after running. Our findings indicate that enhanced reactive recruitment of endogenous antinociceptive mechanisms after aversive repeated pain exposure is attenuated by exercise. The fact that running, but not walking, reproducibly elevated β-endorphin levels in plasma indicates involvement of the opioidergic system in exercise. This may argue for an elevated opioidergic tone in the brain of athletes, mediating antinociceptive mechanisms. Our findings provide the first evidence using functional imaging to support the role of endurance exercise in pain modulation.Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.