-
J. Pharmacol. Exp. Ther. · Sep 2015
Role of Dopamine Type 1 Receptors and Dopamine- and cAMP-Regulated Phosphoprotein Mr 32 kDa in Δ9-Tetrahydrocannabinol-Mediated Induction of ΔFosB in the Mouse Forebrain.
- Matthew F Lazenka, Aaron J Tomarchio, Aron H Lichtman, Paul Greengard, Marc Flajolet, Dana E Selley, and Laura J Sim-Selley.
- Department of Pharmacology and Toxicology and Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, Virginia (M.F.L., A.J.T., A.H.L., D.E.S., L.J.S.-S.); and Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York (P.G., M.F.).
- J. Pharmacol. Exp. Ther. 2015 Sep 1; 354 (3): 316-27.
AbstractΔ(9)-Tetrahydrocannabinol (THC), the main psychoactive component of marijuana, produces motor and motivational effects via interactions with the dopaminergic system in the caudate-putamen and nucleus accumbens. However, the molecular events that underlie these interactions after THC treatment are not well understood. Our study shows that pretreatment with dopamine D1 receptor (D1R) antagonists before repeated administration of THC attenuated induction of Δ FBJ murine osteosarcoma viral oncogene homolog B (ΔFosB) in the nucleus accumbens, caudate-putamen, amygdala, and prefrontal cortex. Anatomical studies showed that repeated THC administration induced ΔFosB in D1R-containing striatal neurons. Dopamine signaling in the striatum involves phosphorylation-specific effects of the dopamine- and cAMP-regulated phosphoprotein Mr 32 kDa (DARPP-32), which regulates protein kinase A signaling. Genetic deletion of DARPP-32 attenuated ΔFosB expression measured after acute, but not repeated, THC administration in both the caudate-putamen and nucleus accumbens. THC was then acutely or repeatedly administered to wild-type (WT) and DARPP-32 knockout (KO) mice, and in vivo responses were measured. DARPP-32 KO mice exhibited enhanced acute THC-mediated hypolocomotion and developed greater tolerance to this response relative to the WT mice. Agonist-stimulated guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding showed that cannabinoid-stimulated G-protein activity did not differ between DARPP-32 KO and WT mice treated with vehicle or repeated THC. These results indicate that D1Rs play a major role in THC-mediated ΔFosB induction in the forebrain, whereas the role of DARPP-32 in THC-mediated ΔFosB induction and modulation of motor activity appears to be more complex. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.