• Sensors (Basel) · Jul 2020

    goFOODTM: An Artificial Intelligence System for Dietary Assessment.

    • Ya Lu, Thomai Stathopoulou, Maria F Vasiloglou, Lillian F Pinault, Colleen Kiley, Elias K Spanakis, and Stavroula Mougiakakou.
    • ARTORG Center for Biomedical Engineering Research, University of Bern, 3008 Bern, Switzerland.
    • Sensors (Basel). 2020 Jul 31; 20 (15).

    AbstractAccurate estimation of nutritional information may lead to healthier diets and better clinical outcomes. We propose a dietary assessment system based on artificial intelligence (AI), named goFOODTM. The system can estimate the calorie and macronutrient content of a meal, on the sole basis of food images captured by a smartphone. goFOODTM requires an input of two meal images or a short video. For conventional single-camera smartphones, the images must be captured from two different viewing angles; smartphones equipped with two rear cameras require only a single press of the shutter button. The deep neural networks are used to process the two images and implements food detection, segmentation and recognition, while a 3D reconstruction algorithm estimates the food's volume. Each meal's calorie and macronutrient content is calculated from the food category, volume and the nutrient database. goFOODTM supports 319 fine-grained food categories, and has been validated on two multimedia databases that contain non-standardized and fast food meals. The experimental results demonstrate that goFOODTM performed better than experienced dietitians on the non-standardized meal database, and was comparable to them on the fast food database. goFOODTM provides a simple and efficient solution to the end-user for dietary assessment.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.