• Clinics · Jan 2021

    Detecting and grading prostate cancer in radical prostatectomy specimens through deep learning techniques.

    • Petronio Augusto de Souza Melo, Carmen Liane Neubarth Estivallet, Miguel Srougi, William Carlos Nahas, and Katia Ramos Moreira Leite.
    • Laboratorio de Pesquisa Medica - LIM55, Divisao de Urologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR.
    • Clinics (Sao Paulo). 2021 Jan 1; 76: e3198.

    ObjectivesThis study aims to evaluate the ability of deep learning algorithms to detect and grade prostate cancer (PCa) in radical prostatectomy specimens.MethodsWe selected 12 whole-slide images of radical prostatectomy specimens. These images were divided into patches, and then, analyzed and annotated. The annotated areas were categorized as follows: stroma, normal glands, and Gleason patterns 3, 4, and 5. Two analyses were performed: i) a categorical image classification method that labels each image as benign or as Gleason 3, Gleason 4, or Gleason 5, and ii) a scanning method in which distinct areas representative of benign and different Gleason patterns are delineated and labeled separately by a pathologist. The Inception v3 Convolutional Neural Network architecture was used in categorical model training, and a Mask Region-based Convolutional Neural Network was used to train the scanning method. After training, we selected three new whole-slide images that were not used during the training to evaluate the model as our test dataset. The analysis results of the images using deep learning algorithms were compared with those obtained by the pathologists.ResultsIn the categorical classification method, the trained model obtained a validation accuracy of 94.1% during training; however, the concordance with our expert uropathologists in the test dataset was only 44%. With the image-scanning method, our model demonstrated a validation accuracy of 91.2%. When the test images were used, the concordance between the deep learning method and uropathologists was 89%.ConclusionDeep learning algorithms have a high potential for use in the diagnosis and grading of PCa. Scanning methods are likely to be superior to simple classification methods.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.