-
- Yuki Todo, Zheng Tang, Hiroyoshi Todo, Junkai Ji, and Kazuya Yamashita.
- Faculty of Electrical and Computer Engineering, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan.
- Int J Neural Syst. 2019 Oct 1; 29 (8): 1950012.
AbstractNeurons are the fundamental units of the brain and nervous system. Developing a good modeling of human neurons is very important not only to neurobiology but also to computer science and many other fields. The McCulloch and Pitts neuron model is the most widely used neuron model, but has long been criticized as being oversimplified in view of properties of real neuron and the computations they perform. On the other hand, it has become widely accepted that dendrites play a key role in the overall computation performed by a neuron. However, the modeling of the dendritic computations and the assignment of the right synapses to the right dendrite remain open problems in the field. Here, we propose a novel dendritic neural model (DNM) that mimics the essence of known nonlinear interaction among inputs to the dendrites. In the model, each input is connected to branches through a distance-dependent nonlinear synapse, and each branch performs a simple multiplication on the inputs. The soma then sums the weighted products from all branches and produces the neuron's output signal. We show that the rich nonlinear dendritic response and the powerful nonlinear neural computational capability, as well as many known neurobiological phenomena of neurons and dendrites, may be understood and explained by the DNM. Furthermore, we show that the model is capable of learning and developing an internal structure, such as the location of synapses in the dendritic branch and the type of synapses, that is appropriate for a particular task - for example, the linearly nonseparable problem, a real-world benchmark problem - Glass classification and the directional selectivity problem.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.