-
- Christian S Guay, Alyssa K Labonte, Michael C Montana, Eric C Landsness, Brendan P Lucey, MohammadMehdi Kafashan, Simon Haroutounian, Michael S Avidan, Emery N Brown, and PalancaBen Julian ABJA0000-0001-7535-5701Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.Division o.
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- Nat Sci Sleep. 2021 Jan 1; 13: 303-313.
IntroductionThe relative power of slow-delta oscillations in the electroencephalogram (EEG), termed slow-wave activity (SWA), correlates with level of unconsciousness. Acoustic enhancement of SWA has been reported for sleep states, but it remains unknown if pharmacologically induced SWA can be enhanced using sound. Dexmedetomidine is a sedative whose EEG oscillations resemble those of natural sleep. This pilot study was designed to investigate whether SWA can be enhanced using closed-loop acoustic stimulation during sedation (CLASS) with dexmedetomidine.MethodsClosed-Loop Acoustic Stimulation during Sedation with Dexmedetomidine (CLASS-D) is a within-subject, crossover, controlled, interventional trial with healthy volunteers. Each participant will be sedated with a dexmedetomidine target-controlled infusion (TCI). Participants will undergo three CLASS conditions in a multiple crossover design: in-phase (phase-locked to slow-wave upslopes), anti-phase (phase-locked to slow-wave downslopes) and sham (silence). High-density EEG recordings will assess the effects of CLASS across the scalp. A volitional behavioral task and sequential thermal arousals will assess the anesthetic effects of CLASS. Ambulatory sleep studies will be performed on nights immediately preceding and following the sedation session. EEG effects of CLASS will be assessed using linear mixed-effects models. The impacts of CLASS on behavior and arousal thresholds will be assessed using logistic regression modeling. Parametric modeling will determine differences in sleepiness and measures of sleep homeostasis before and after sedation.ResultsThe primary outcome of this pilot study is the effect of CLASS on EEG slow waves. Secondary outcomes include the effects of CLASS on the following: performance of a volitional task, arousal thresholds, and subsequent sleep.DiscussionThis investigation will elucidate 1) the potential of exogenous sensory stimulation to potentiate SWA during sedation; 2) the physiologic significance of this intervention; and 3) the connection between EEG slow-waves observed during sleep and sedation.© 2021 Guay et al.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.