• Acta oncologica · Jun 2017

    Case Reports

    Linear energy transfer distributions in the brainstem depending on tumour location in intensity-modulated proton therapy of paediatric cancer.

    • Lars Fredrik Fjæra, Zuofeng Li, Kristian S Ytre-Hauge, Ludvig P Muren, Daniel J Indelicato, Yasmin Lassen-Ramshad, Grete May Engeseth, Marianne Brydøy, Andrea Mairani, Stella Flampouri, Olav Dahl, and Camilla H Stokkevåg.
    • a Department of Physics and Technology , University of Bergen , Bergen , Norway.
    • Acta Oncol. 2017 Jun 1; 56 (6): 763-768.

    BackgroundFor tumours near organs at risk, there is concern about unintended increase in biological dose from elevated linear energy transfer (LET) at the distal end of treatment fields. The objective of this study was therefore to investigate how different paediatric posterior fossa tumour locations impact LET and biological dose to the brainstem during intensity-modulated proton therapy (IMPT).Material And MethodsMultiple IMPT plans were generated for four different simulated tumour locations relative to the brainstem for a five-year-old male patient. A prescribed dose of 59.4 Gy(RBE) was applied to the planning target volumes (PTVs). Plans with two lateral and one posterior non-coplanar fields were created, along with plans with modified field arrangements. The dose-averaged LET (LETd) and the physical dose × RBELET (D × RBELET), where RBELET=1+c × LETd, were calculated using the FLUKA Monte Carlo code. A scaling parameter c was applied to make the RBELET represent variations in the biological effect due to LET.ResultsHigh LETd values surrounded parts of the PTV and encompassed portions of the brainstem. Mean LETd values in the brainstem were 3.2-6.6 keV/μm. The highest absolute brainstem LETd values were seen with the tumour located most distant from the brainstem, whereas lower and more homogeneous LETd values were seen when the tumour invaded the brainstem. In contrast, the highest mean D × RBELET values were found in the latter case (54.0 Gy(RBE)), while the case with largest distance between tumour and brainstem had a mean D × RBELET of 1.8 Gy(RBE).ConclusionsUsing IMPT to treat posterior fossa tumours may result in high LETd values within the brainstem, particularly if the tumour volume is separated from the brainstem. However, the D × RBELET was greater for tumours that approached or invaded the brainstem. Changing field angles showed a reduction of LETd and D × RBELET in the brainstem.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…