• Eur J Pharm Sci · Apr 2019

    Clinical Trial

    High voriconazole target-site exposure after approved sequence dosing due to nonlinear pharmacokinetics assessed by long-term microdialysis.

    • Claudia Kirbs, Franziska Kluwe, Franziska Drescher, Edith Lackner, Peter Matzneller, Johanna Weiss, Markus Zeitlinger, and Charlotte Kloft.
    • Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany; Department of Clinical Pharmacy, Institute of Pharmacy, Martin-Luther-Universitaet Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4, 06120 Halle (Saale), Germany. Electronic address: claudia.kirbs@fu-berlin.de.
    • Eur J Pharm Sci. 2019 Apr 1; 131: 218-229.

    AbstractVoriconazole, a broad-spectrum antifungal drug used to prevent and treat invasive fungal infections, shows complex pharmacokinetics and is primarily metabolised by various CYP enzymes. An adequate unbound antibiotic concentration-time profile at the target-site of an infection is crucial for effective prophylaxis or therapy success. Therefore, the aim was to evaluate the pharmacokinetics of voriconazole after the approved sequence dosing in healthy volunteers in interstitial space fluid, assessed by microdialysis, and in plasma. Moreover, potential pharmacogenetic influences of CYP2C19 polymorphisms on pharmacokinetics were investigated. The prospective, open-labelled, uncontrolled long-term microdialysis study included 9 healthy male individuals receiving the approved sequence dosing regimen for voriconazole. Unbound voriconazole concentrations were sampled over 84 h in interstitial space fluid of subcutaneous adipose tissue and in plasma and subsequently quantified via high-performance liquid chromatography. For pharmacokinetic data analysis, non-compartmental analysis was used. High interindividual variability in voriconazole concentration-time profiles was detected although dosing was adapted to body weight for the first intravenous administrations. Due to nonlinear pharmacokinetics, target-site exposure of voriconazole in healthy volunteers was found to be highly comparable to plasma exposure, particularly after multiple dosing. Regarding the CYP2C19 genotype-predicted phenotype, the individuals revealed a broad spectrum, ranging from poor to rapid metaboliser status. A strong relation between CYP2C19 genotype-predicted phenotype and voriconazole clearance was identified.Copyright © 2019. Published by Elsevier B.V.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…