• J Cardiovasc Magn Reson · Dec 2020

    Deep learning to diagnose cardiac amyloidosis from cardiovascular magnetic resonance.

    • Nicola Martini, Alberto Aimo, Andrea Barison, Daniele Della Latta, Giuseppe Vergaro, Giovanni Donato Aquaro, Andrea Ripoli, Michele Emdin, and Dante Chiappino.
    • Deep Health Unit, Fondazione Toscana Gabriele Monasterio, Pisa-Massa, Italy. nicola.martini@ftgm.it.
    • J Cardiovasc Magn Reson. 2020 Dec 7; 22 (1): 84.

    BackgroundCardiovascular magnetic resonance (CMR) is part of the diagnostic work-up for cardiac amyloidosis (CA). Deep learning (DL) is an application of artificial intelligence that may allow to automatically analyze CMR findings and establish the likelihood of CA.Methods1.5 T CMR was performed in 206 subjects with suspected CA (n = 100, 49% with unexplained left ventricular (LV) hypertrophy; n = 106, 51% with blood dyscrasia and suspected light-chain amyloidosis). Patients were randomly assigned to the training (n = 134, 65%), validation (n = 30, 15%), and testing subgroups (n = 42, 20%). Short axis, 2-chamber, 4-chamber late gadolinium enhancement (LGE) images were evaluated by 3 networks (DL algorithms). The tags "amyloidosis present" or "absent" were attributed when the average probability of CA from the 3 networks was ≥ 50% or < 50%, respectively. The DL strategy was compared to a machine learning (ML) algorithm considering all manually extracted features (LV volumes, mass and function, LGE pattern, early blood-pool darkening, pericardial and pleural effusion, etc.), to reproduce exam reading by an experienced operator.ResultsThe DL strategy displayed good diagnostic accuracy (88%), with an area under the curve (AUC) of 0.982. The precision (positive predictive value), recall score (sensitivity), and F1 score (a measure of test accuracy) were 83%, 95%, and 89% respectively. A ML algorithm considering all CMR features had a similar diagnostic yield to DL strategy (AUC 0.952 vs. 0.982; p = 0.39).ConclusionsA DL approach evaluating LGE acquisitions displayed a similar diagnostic performance for CA to a ML-based approach, which simulates CMR reading by experienced operators.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.