-
Multicenter Study Comparative Study
Improved Accuracy in Optical Diagnosis of Colorectal Polyps Using Convolutional Neural Networks with Visual Explanations.
- Eun Hyo Jin, Dongheon Lee, Jung Ho Bae, Hae Yeon Kang, Min-Sun Kwak, Ji Yeon Seo, Jong In Yang, Sun Young Yang, Seon Hee Lim, Jeong Yoon Yim, Joo Hyun Lim, Goh Eun Chung, Su Jin Chung, Ji Min Choi, Yoo Min Han, Seung Joo Kang, Jooyoung Lee, Chan KimHeeHInterdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, Korea; Department of Biomedical Engineering College of Medicine, Seoul National University, Seoul, Korea; Institute of Medical & Biological Enginee, and Joo Sung Kim.
- Department of Internal Medicine, Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea.
- Gastroenterology. 2020 Jun 1; 158 (8): 2169-2179.e8.
Background & AimsNarrow-band imaging (NBI) can be used to determine whether colorectal polyps are adenomatous or hyperplastic. We investigated whether an artificial intelligence (AI) system can increase the accuracy of characterizations of polyps by endoscopists of different skill levels.MethodsWe developed convolutional neural networks (CNNs) for evaluation of diminutive colorectal polyps, based on efficient neural architecture searches via parameter sharing with augmentation using NBIs of diminutive (≤5 mm) polyps, collected from October 2015 through October 2017 at the Seoul National University Hospital, Healthcare System Gangnam Center (training set). We trained the CNN using images from 1100 adenomatous polyps and 1050 hyperplastic polyps from 1379 patients. We then tested the system using 300 images of 180 adenomatous polyps and 120 hyperplastic polyps, obtained from January 2018 to May 2019. We compared the accuracy of 22 endoscopists of different skill levels (7 novices, 4 experts, and 11 NBI-trained experts) vs the CNN in evaluation of images (adenomatous vs hyperplastic) from 180 adenomatous and 120 hyperplastic polyps. The endoscopists then evaluated the polyp images with knowledge of the CNN-processed results. We conducted mixed-effect logistic and linear regression analyses to determine the effects of AI assistance on the accuracy of analysis of diminutive colorectal polyps by endoscopists (primary outcome).ResultsThe CNN distinguished adenomatous vs hyperplastic diminutive polyps with 86.7% accuracy, based on histologic analysis as the reference standard. Endoscopists distinguished adenomatous vs hyperplastic diminutive polyps with 82.5% overall accuracy (novices, 73.8% accuracy; experts, 83.8% accuracy; and NBI-trained experts, 87.6% accuracy). With knowledge of the CNN-processed results, the overall accuracy of the endoscopists increased to 88.5% (P < .05). With knowledge of the CNN-processed results, the accuracy of novice endoscopists increased to 85.6% (P < .05). The CNN-processed results significantly reduced endoscopist time of diagnosis (from 3.92 to 3.37 seconds per polyp, P = .042).ConclusionsWe developed a CNN that significantly increases the accuracy of evaluation of diminutive colorectal polyps (as adenomatous vs hyperplastic) and reduces the time of diagnosis by endoscopists. This AI assistance system significantly increased the accuracy of analysis by novice endoscopists, who achieved near-expert levels of accuracy without extra training. The CNN assistance system can reduce the skill-level dependence of endoscopists and costs.Copyright © 2020 AGA Institute. Published by Elsevier Inc. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.