• Curr Opin Crit Care · Dec 2021

    Review

    Advances in artificial intelligence and deep learning systems in ICU-related acute kidney injury.

    • Tezcan Ozrazgat-Baslanti, Tyler J Loftus, Yuanfang Ren, Matthew M Ruppert, and Azra Bihorac.
    • Department of Medicine.
    • Curr Opin Crit Care. 2021 Dec 1; 27 (6): 560572560-572.

    Purpose Of ReviewAcute kidney injury (AKI) affects nearly 60% of all patients admitted to ICUs. Large volumes of clinical, monitoring and laboratory data produced in ICUs allow the application of artificial intelligence analytics. The purpose of this article is to assimilate and critically evaluate recently published literature regarding artificial intelligence applications for predicting, diagnosing and subphenotyping AKI among critically ill patients.Recent FindingsAmong recent studies regarding artificial intelligence implementations for predicting, diagnosing and subphenotyping AKI among critically ill patients, there are many promising models, but few had external validation, clinical interpretability and high predictive performance. Deep learning techniques leveraging multimodal clinical data show great potential to provide continuous, accurate, early predictions of AKI risk, which could be implemented clinically to optimize preventive and early therapeutic management strategies.SummaryUse of consensus criteria, standard definitions and common data models could facilitate access to machine learning-ready data sets for external validation. The lack of interpretability, explainability, fairness and transparency of artificial intelligence models hinder their entrustment and clinical implementation; compliance with standardized reporting guidelines can mitigate these challenges.Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.