• eNeuro · Jul 2021

    Deciphering Spinal Endogenous Dopaminergic Mechanisms That Modulate Micturition Reflexes in Rats with Spinal Cord Injury.

    • Shaoping Hou, Jaclyn H DeFinis, Stephanie L Daugherty, Chuanxi Tang, Jeremy Weinberger, and William C de Groat.
    • Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129 sh698@drexel.edu.
    • eNeuro. 2021 Jul 1; 8 (4).

    AbstractSpinal neuronal mechanisms regulate recovered involuntary micturition after spinal cord injury (SCI). It was recently discovered that dopamine (DA) is synthesized in the rat injured spinal cord and is involved in lower urinary tract (LUT) activity. To fully understand the role of spinal DAergic machinery in micturition, we examined urodynamic responses in female rats during pharmacological modulation of the DA pathway. Three to four weeks after complete thoracic SCI, the DA precursor L-DOPA administered intravenously during bladder cystometrogram (CMG) and external urethral sphincter (EUS) electromyography (EMG) reduced bladder overactivity and increased the duration of EUS bursting, leading to remarkably improved voiding efficiency. Apomorphine (APO), a non-selective DA receptor (DR) agonist, or quinpirole, a selective DR2 agonist, induced similar responses, whereas a specific DR2 antagonist remoxipride alone had only minimal effects. Meanwhile, administration of SCH 23390, a DR1 antagonist, reduced voiding efficiency by increasing tonic EUS activity and shortening the EUS bursting period. Unexpectedly, SKF 38393, a selective DR1 agonist, increased EUS tonic activity, implying a complicated role of DR1 in LUT function. In metabolic cage assays, subcutaneous administration of quinpirole decreased spontaneous voiding frequency and increased voiding volume; L-DOPA and APO were inactive possibly because of slow entry into the CNS. Collectively, tonically active DR1 in SCI rats inhibit urine storage and enhance voiding by differentially modulating EUS tonic and bursting patterns, respectively, while pharmacologic activation of DR2, which are normally silent, improves voiding by enhancing EUS bursting. Thus, enhancing DA signaling achieves better detrusor-sphincter coordination to facilitate micturition function in SCI rats.Copyright © 2021 Hou et al.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.