-
Randomized Controlled Trial
Carbon Dioxide Changes during High-flow Nasal Oxygenation in Apneic Patients: A Single-center Randomized Controlled Noninferiority Trial.
- Thomas Riva, Robert Greif, Heiko Kaiser, Thomas Riedel, Markus Huber, Lorenz Theiler, and Sabine Nabecker.
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Anesthesiology. 2022 Jan 1; 136 (1): 829282-92.
BackgroundAnesthesia studies using high-flow, humidified, heated oxygen delivered via nasal cannulas at flow rates of more than 50 l · min-1 postulated a ventilatory effect because carbon dioxide increased at lower levels as reported earlier. This study investigated the increase of arterial partial pressure of carbon dioxide between different flow rates of 100% oxygen in elective anesthetized and paralyzed surgical adults before intubation.MethodsAfter preoxygenation and standardized anesthesia induction with nondepolarizing neuromuscular blockade, all patients received 100% oxygen (via high-flow nasal oxygenation system or circuit of the anesthesia machine), and continuous jaw thrust/laryngoscopy was applied throughout the 15-min period. In this single-center noninferiority trial, 25 patients each, were randomized to five groups: (1) minimal flow: 0.25 l · min-1, endotracheal tube; (2) low flow: 2 l · min-1, continuous jaw thrust; (3) medium flow: 10 l · min-1, continuous jaw thrust; (4) high flow: 70 l · min-1, continuous jaw thrust; and (5) control: 70 l · min-1, continuous laryngoscopy. Immediately after anesthesia induction, the 15-min apnea period started with oxygen delivered according to the randomized flow rate. Serial arterial blood gas analyses were drawn every 2 min. The study was terminated if either oxygen saturation measured by pulse oximetry was less than 92%, transcutaneous carbon dioxide was greater than 100 mmHg, pH was less than 7.1, potassium level was greater than 6 mmol · l-1, or apnea time was 15 min. The primary outcome was the linear rate of mean increase of arterial carbon dioxide during the 15-min apnea period computed from linear regressions.ResultsIn total, 125 patients completed the study. Noninferiority with a predefined noninferiority margin of 0.3 mmHg · min-1 could be declared for all treatments with the following mean and 95% CI for the mean differences in the linear rate of arterial partial pressure of carbon dioxide with associated P values regarding noninferiority: high flow versus control, -0.0 mmHg · min-1 (-0.3, 0.3 mmHg · min-1, P = 0.030); medium flow versus control, -0.1 mmHg · min-1 (-0.4, 0.2 mmHg · min-1, P = 0.002); low flow versus control, -0.1 mmHg · min-1 (-0.4, 0.2 mmHg · min-1, P = 0.003); and minimal flow versus control, -0.1 mmHg · min-1 (-0.4, 0.2 mmHg · min-1, P = 0.004).ConclusionsWidely differing flow rates of humidified 100% oxygen during apnea resulted in comparable increases of arterial partial pressure of carbon dioxide, which does not support an additional ventilatory effect of high-flow nasal oxygenation.Copyright © 2021, the American Society of Anesthesiologists. All Rights Reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.