• Neurology · Mar 2021

    Natural History, Phenotypic Spectrum, and Discriminative Features of Multisystemic RFC1 Disease.

    • Andreas Traschütz, Andrea Cortese, Selina Reich, Natalia Dominik, Jennifer Faber, Heike Jacobi, Annette M Hartmann, Dan Rujescu, Solveig Montaut, Andoni Echaniz-Laguna, Sevda Erer, Valerie Cornelia Schütz, Alexander A Tarnutzer, Marc Sturm, Tobias B Haack, Nadège Vaucamps-Diedhiou, Helene Puccio, Ludger Schöls, Thomas Klockgether, Bart P van de Warrenburg, Martin Paucar, Dagmar Timmann, Ralf-Dieter Hilgers, Jose Gazulla, Michael Strupp, German Moris, Alessandro Filla, Henry Houlden, Mathieu Anheim, Jon Infante, A Nazli Basak, Matthis Synofzik, and RFC1 Study Group.
    • From the Department of Neurodegenerative Diseases (A.T., S.R., L.S., M. Synofzik), Hertie-Institute for Clinical Brain Research and Center of Neurology, and German Center for Neurodegenerative Diseases (DZNE) (A.T., S.R., L.S., M. Synofzik), University of Tübingen, Germany; MRC Centre for Neuromuscular Diseases (A.C., N.D., H.H.), Department of Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, UCL Queen Square Institute of Neurology, London, UK; Department of Brain and Behaviour Sciences (A.C.), University Pavia, Italy; Department of Neurology (J.F., T.K.), University Hospital Bonn; German Center for Neurodegenerative Diseases (DZNE) (J.F., H.J., T.K.), Bonn; Department of Neurology (H.J.), University Hospital of Heidelberg; Department of Psychiatry, Psychotherapy and Psychosomatics (A.M.H., D.R.), University of Halle, Germany; Département de Neurologie (S.M., M.A.), Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg; Department of Neurology (A.E.-L.), APHP, CHU de Bicêtre; French National Reference Center for Rare Neuropathies (NNERF) (A.E.-L.); Inserm U1195 and Paris-Sud University (A.E.-L.), Le Kremlin Bicêtre, France; Medical Faculty (S.E.), Department of Neurology, Uludag University, Bursa, Turkey; University of Zurich (V.C.S., A.A.T.); Department of Neurology (V.C.S., A.A.T.), University Hospital Zurich, Switzerland; Institute of Medical Genetics and Applied Genomics (M. Sturm, T.B.H.) and Center for Rare Diseases (T.B.H.), University of Tübingen, Germany; Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) (N.V.-D., H.P.); INSERM (N.V.-D., H.P.), U1258; CNRS (N.V.-D., H.P.), UMR7104, Illkirch; Université de Strasbourg (H.P.), France; Department of Neurology (B.P.v.d.W.), Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Neurology (M.P.), Karolinska University Hospital; Department of Clinical Neuroscience (M.P.), Karolinska Institute, Stockholm, Sweden; Department of Neurology (D.T.), Essen University Hospital, University of Duisburg-Essen, Essen; Department of Medical Statistics (R.-D.H.), RWTH Aachen University, Germany; Department of Neurology (J.G.), Hospital Universitario Miguel Servet. Zaragoza, Spain; Department of Neurology (M. Strupp), University Hospital, and German Center for Vertigo and Balance Disorders (M.Strupp), Ludwig Maximilians University, Munich, Germany; Neurology Service (G.M.), Hospital Unversitario Central de Asturias (HUCA), SESPA, Oviedo, Spain; Department of Neurosciences and Reproductive and Odontostomatological Sciences (A.F.), Federico II University Naples, Italy; Institute of Genetics and Molecular and Cellular Biology (M.A.), INSERM-U964/CNRS-UMR7104, University of Strasbourg, Illkirch; Strasbourg Federation of Translational Medicine (M.A.), University of Strasbourg, Strasbourg, France; Service of Neurology (J.I.), University Hospital "Marqués de Valdecilla (IDIVAL)," University of Cantabria, "Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)," Santander, Spain; and Suna and Inan Kıraç Foundation (A.N.B.), Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey.
    • Neurology. 2021 Mar 2; 96 (9): e1369-e1382.

    ObjectiveTo delineate the full phenotypic spectrum, discriminative features, piloting longitudinal progression data, and sample size calculations of replication factor complex subunit 1 (RFC1) repeat expansions, recently identified as causing cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS).MethodsMultimodal RFC1 repeat screening (PCR, Southern blot, whole-exome/genome sequencing-based approaches) combined with cross-sectional and longitudinal deep phenotyping in (1) cross-European cohort A (70 families) with ≥2 features of CANVAS or ataxia with chronic cough (ACC) and (2) Turkish cohort B (105 families) with unselected late-onset ataxia.ResultsPrevalence of RFC1 disease was 67% in cohort A, 14% in unselected cohort B, 68% in clinical CANVAS, and 100% in ACC. RFC1 disease was also identified in Western and Eastern Asian individuals and even by whole-exome sequencing. Visual compensation, sensory symptoms, and cough were strong positive discriminative predictors (>90%) against RFC1-negative patients. The phenotype across 70 RFC1-positive patients was mostly multisystemic (69%), including dysautonomia (62%) and bradykinesia (28%) (overlap with cerebellar-type multiple system atrophy [MSA-C]), postural instability (49%), slow vertical saccades (17%), and chorea or dystonia (11%). Ataxia progression was ≈1.3 Scale for the Assessment and Rating of Ataxia points per year (32 cross-sectional, 17 longitudinal assessments, follow-up ≤9 years [mean 3.1 years]) but also included early falls, variable nonlinear phases of MSA-C-like progression (SARA points 2.5-5.5 per year), and premature death. Treatment trials require 330 (1-year trial) and 132 (2-year trial) patients in total to detect 50% reduced progression.ConclusionsRFC1 disease is frequent and occurs across continents, with CANVAS and ACC as highly diagnostic phenotypes yet as variable, overlapping clusters along a continuous multisystemic disease spectrum, including MSA-C-overlap. Our natural history data help to inform future RFC1 treatment trials.Classification Of EvidenceThis study provides Class II evidence that RFC1 repeat expansions are associated with CANVAS and ACC.Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…