-
- Viktor von Bahr, Jonathan E Millar, Maximillian V Malfertheiner, Katrina K Ki, Margaret R Passmore, Nicole Bartnikowski, Meredith A Redd, Michael Cavaye, Jacky Y Suen, Danny F McAuley, and John F Fraser.
- 1 Critical Care Research Group, The Prince Charles Hospital, The University of Queensland, Brisbane, QLD, Australia.
- Perfusion. 2019 Apr 1; 34 (1_suppl): 15-21.
IntroductionMesenchymal stem cells exhibit immunomodulatory properties which are currently being investigated as a novel treatment option for Acute Respiratory Distress Syndrome. However, the feasibility and efficacy of mesenchymal stem cell therapy in the setting of extracorporeal membrane oxygenation is poorly understood. This study aimed to characterise markers of innate immune activation in response to mesenchymal stem cells during an ex vivo simulation of extracorporeal membrane oxygenation.MethodsEx vivo extracorporeal membrane oxygenation simulations (n = 10) were conducted using a commercial extracorporeal circuit with a CO2-enhanced fresh gas supply and donor human whole blood. Heparinised circuits (n = 4) were injected with 40 × 106-induced pluripotent stem cell-derived human mesenchymal stem cells, while the remainder (n = 6) acted as controls. Simulations were maintained, under physiological conditions, for 240 minutes. Circuits were sampled at 15, 30, 60, 120 and 240 minutes and assessed for levels of interleukin-1β, interleukin-6, interleukin-8, interleukin-10, tumour necrosis factor-α, transforming growth factor-β1, myeloperoxidase and α-Defensin-1. In addition, haemoglobin, platelet and leukocyte counts were performed.ResultsThere was a trend towards reduced levels of pro-inflammatory cytokines in mesenchymal stem cell-treated circuits and a significant increase in transforming growth factor-β1. Blood cells and markers of neutrophil activation were reduced in mesenchymal stem cell circuits during the length of the simulation. As previously reported, the addition of mesenchymal stem cells resulted in a reduction of flow and increased trans-oxygenator pressures in comparison to controls.ConclusionsThe addition of mesenchymal stem cells during extracorporeal membrane oxygenation may cause an increase in transforming growth factor-β1. This is despite their ability to adhere to the membrane oxygenator. Further studies are required to confirm these findings.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.