• Bmc Med Inform Decis · Dec 2019

    Use of natural language processing to improve predictive models for imaging utilization in children presenting to the emergency department.

    • Xingyu Zhang, BellolioM FernandaMFDepartment of Emergency Medicine, Mayo Clinic, Rochester, USA., Pau Medrano-Gracia, Konrad Werys, Sheng Yang, and Prashant Mahajan.
    • Department of Systems, Populations and Leadership, University of Michigan School of Nursing, Ann Arbor, USA. zhangxyu@umich.edu.
    • Bmc Med Inform Decis. 2019 Dec 30; 19 (1): 287.

    ObjectiveTo examine the association between the medical imaging utilization and information related to patients' socioeconomic, demographic and clinical factors during the patients' ED visits; and to develop predictive models using these associated factors including natural language elements to predict the medical imaging utilization at pediatric ED.MethodsPediatric patients' data from the 2012-2016 United States National Hospital Ambulatory Medical Care Survey was included to build the models to predict the use of imaging in children presenting to the ED. Multivariable logistic regression models were built with structured variables such as temperature, heart rate, age, and unstructured variables such as reason for visit, free text nursing notes and combined data available at triage. NLP techniques were used to extract information from the unstructured data.ResultsOf the 27,665 pediatric ED visits included in the study, 8394 (30.3%) received medical imaging in the ED, including 6922 (25.0%) who had an X-ray and 1367 (4.9%) who had a computed tomography (CT) scan. In the predictive model including only structured variables, the c-statistic was 0.71 (95% CI: 0.70-0.71) for any imaging use, 0.69 (95% CI: 0.68-0.70) for X-ray, and 0.77 (95% CI: 0.76-0.78) for CT. Models including only unstructured information had c-statistics of 0.81 (95% CI: 0.81-0.82) for any imaging use, 0.82 (95% CI: 0.82-0.83) for X-ray, and 0.85 (95% CI: 0.83-0.86) for CT scans. When both structured variables and free text variables were included, the c-statistics reached 0.82 (95% CI: 0.82-0.83) for any imaging use, 0.83 (95% CI: 0.83-0.84) for X-ray, and 0.87 (95% CI: 0.86-0.88) for CT.ConclusionsBoth CT and X-rays are commonly used in the pediatric ED with one third of the visits receiving at least one. Patients' socioeconomic, demographic and clinical factors presented at ED triage period were associated with the medical imaging utilization. Predictive models combining structured and unstructured variables available at triage performed better than models using structured or unstructured variables alone, suggesting the potential for use of NLP in determining resource utilization.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.