• Circulation research · Jun 1983

    Influence of perfusate PO2 on hypoxic pulmonary vasoconstriction in rats.

    • C Marshall and B E Marshall.
    • Circ. Res. 1983 Jun 1; 52 (6): 691-6.

    AbstractThe purpose of these studies was to evaluate the influence of perfusate oxygen tension on hypoxic pulmonary vasoconstriction and to identify the site at which both alveolar and perfusate gas tensions stimulate hypoxic pulmonary vasoconstriction. Lungs from adult rats were ventilated and perfused in vitro at constant temperature, PCO2, and pH, with a perfusion circuit incorporating a membrane oxygenator that allowed independent control of the alveolar and perfusate gas tensions. Blood flow to the lung was constant (0.06 ml per g body weight per min), and pulmonary vascular resistance was therefore proportional to pulmonary artery pressure. In study 1, the pulmonary artery pressor response to zero or 22 mm Hg alveolar oxygen was measured when the perfusate oxygen tensions were approximately 8, 26, 41, 64, or 128 mm Hg. The pressor response as a percent of the maximum pressure change was progressively reduced as perfusate oxygen tension increased. For alveolar oxygen tension of zero; the pressor response = 128 -39 (Log PPO2) and r = 0.8 (P less than 0.01), the effect of perfusate gas tension on the response to alveolar gas tension of 22 mm Hg was similar. These results demonstrate that the stimulus for hypoxic pulmonary vasoconstriction is a function of both alveolar and perfusate oxygen tension. In study 2, the response to alveolar oxygen tension of 42 mm Hg was measured with mean perfusate oxygen tensions of 130, 52, and 17 mm Hg. In six animals with forward perfusion, the responses decreased with increasing perfusate oxygen tension, as in study 1. In another six animals, with retrograde perfusion, the responses to alveolar hypoxia were not altered when perfusate oxygen tension was increased. These results demonstrate that the sensor region for hypoxic pulmonary vasoconstriction is precapillary. These studies confirm and extend previous hypotheses that alveolar and perfusate oxygen tensions together, determine the PO2 at a precapillary site to stimulate hypoxic pulmonary vasoconstriction.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.