• JAMA network open · Jan 2020

    Assessment of Mandibular Movement Monitoring With Machine Learning Analysis for the Diagnosis of Obstructive Sleep Apnea.

    • Jean-Louis Pépin, Clément Letesson, Nhat Nam Le-Dong, Antoine Dedave, Stéphane Denison, Valérie Cuthbert, Jean-Benoît Martinot, and David Gozal.
    • Pôle Thorax et Vaisseaux, Centre Hospitalier Universitaire (CHU) de Grenoble-Alpes (CHUGA), Université Grenoble Alpes, Institut National de la Santé et de la Recherche Medicale, Grenoble, France.
    • JAMA Netw Open. 2020 Jan 3; 3 (1): e1919657.

    ImportanceGiven the high prevalence of obstructive sleep apnea (OSA), there is a need for simpler and automated diagnostic approaches.ObjectiveTo evaluate whether mandibular movement (MM) monitoring during sleep coupled with an automated analysis by machine learning is appropriate for OSA diagnosis.Design, Setting, And ParticipantsDiagnostic study of adults undergoing overnight in-laboratory polysomnography (PSG) as the reference method compared with simultaneous MM monitoring at a sleep clinic in an academic institution (Sleep Laboratory, Centre Hospitalier Universitaire Université Catholique de Louvain Namur Site Sainte-Elisabeth, Namur, Belgium). Patients with suspected OSA were enrolled from July 5, 2017, to October 31, 2018.Main Outcomes And MeasuresObstructive sleep apnea diagnosis required either evoking signs or symptoms or related medical or psychiatric comorbidities coupled with a PSG-derived respiratory disturbance index (PSG-RDI) of at least 5 events/h. A PSG-RDI of at least 15 events/h satisfied the diagnosis criteria even in the absence of associated symptoms or comorbidities. Patients who did not meet these criteria were classified as not having OSA. Agreement analysis and diagnostic performance were assessed by Bland-Altman plot comparing PSG-RDI and the Sunrise system RDI (Sr-RDI) with diagnosis threshold optimization via receiver operating characteristic curves, allowing for evaluation of the device sensitivity and specificity in detecting OSA at 5 events/h and 15 events/h.ResultsAmong 376 consecutive adults with suspected OSA, the mean (SD) age was 49.7 (13.2) years, the mean (SD) body mass index was 31.0 (7.1), and 207 (55.1%) were men. Reliable agreement was found between PSG-RDI and Sr-RDI in patients without OSA (n = 46; mean difference, 1.31; 95% CI, -1.05 to 3.66 events/h) and in patients with OSA with a PSG-RDI of at least 5 events/h with symptoms (n = 107; mean difference, -0.69; 95% CI, -3.77 to 2.38 events/h). An Sr-RDI underestimation of -11.74 (95% CI, -20.83 to -2.67) events/h in patients with OSA with a PSG-RDI of at least 15 events/h was detected and corrected by optimization of the Sunrise system diagnostic threshold. The Sr-RDI showed diagnostic capability, with areas under the receiver operating characteristic curve of 0.95 (95% CI, 0.92-0.96) and 0.93 (95% CI, 0.90-0.93) for corresponding PSG-RDIs of 5 events/h and 15 events/h, respectively. At the 2 optimal cutoffs of 7.63 events/h and 12.65 events/h, Sr-RDI had accuracy of 0.92 (95% CI, 0.90-0.94) and 0.88 (95% CI, 0.86-0.90) as well as posttest probabilities of 0.99 (95% CI, 0.99-0.99) and 0.89 (95% CI, 0.88-0.91) at PSG-RDIs of at least 5 events/h and at least 15 events/h, respectively, corresponding to positive likelihood ratios of 14.86 (95% CI, 9.86-30.12) and 5.63 (95% CI, 4.92-7.27), respectively.Conclusions And RelevanceAutomatic analysis of MM patterns provided reliable performance in RDI calculation. The use of this index in OSA diagnosis appears to be promising.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.