• Eur J Trauma Emerg Surg · Jun 2022

    Prediction of recovery in trauma patients using Latent Markov models.

    • Roos Johanna Maria Havermans, Felix Johannes Clouth, Koen Willem Wouter Lansink, Jeroen Kornelis Vermunt, Mariska Adriana Cornelia de Jongh, and Leonie de Munter.
    • Department of Surgery, ETZ Hospital, Tilburg, The Netherlands. r.havermans@etz.nl.
    • Eur J Trauma Emerg Surg. 2022 Jun 1; 48 (3): 2059-2080.

    PurposePatients' expectations during recovery after a trauma can affect the recovery. The aim of the present study was to identify different physical recovery trajectories based on Latent Markov Models (LMMs) and predict these recovery states based on individual patient characteristics.MethodsThe data of a cohort of adult trauma patients until the age of 75 years with a length of hospital stay of 3 days and more were derived from the Brabant Injury Outcome Surveillance (BIOS) study. The EuroQol-5D 3-level version and the Health Utilities Index were used 1 week, and 1, 3, 6, 12, and 24 months after injury. Four prediction models, for mobility, pain, self-care, and daily activity, were developed using LMMs with ordinal latent states and patient characteristics as predictors for the latent states.ResultsIn total, 1107 patients were included. Four models with three ordinal latent states were developed, with different covariates in each model. The prediction of the (ordinal) latent states in the LMMs yielded pseudo-R2 values between 40 and 53% and between 21 and 41% (depending of the type R2 used) and classification errors between 24 and 40%. Most patients seem to recover fast as only about a quarter of the patients remain with severe problems after 1 month.ConclusionThe use of LMMs to model the development of physical function post-injury is a promising way to obtain a prediction of the physical recovery. The step-by-step prediction fits well with the outpatient follow-up and it can be used to inform the patients more tailor-made to manage the expectations.© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…