• J. Biol. Chem. · Sep 2011

    Nitric oxide inhibits nociceptive transmission by differentially regulating glutamate and glycine release to spinal dorsal horn neurons.

    • Xiao-Gao Jin, Shao-Rui Chen, Xue-Hong Cao, Li Li, and Hui-Lin Pan.
    • Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
    • J. Biol. Chem. 2011 Sep 23;286(38):33190-202.

    AbstractNitric oxide (NO) is involved in many physiological functions, but its role in pain signaling remains uncertain. Surprisingly, little is known about how endogenous NO affects excitatory and inhibitory synaptic transmission at the spinal level. Here we determined how NO affects excitatory and inhibitory synaptic inputs to dorsal horn neurons using whole-cell recordings in rat spinal cord slices. The NO precursor L-arginine or the NO donor SNAP significantly increased the frequency of glycinergic spontaneous and miniature inhibitory postsynaptic currents (IPSCs) of lamina II neurons. However, neither L-arginine nor SNAP had any effect on GABAergic IPSCs. L-arginine and SNAP significantly reduced the amplitude of monosynaptic excitatory postsynaptic currents (EPSCs) evoked from the dorsal root with an increase in paired-pulse ratio. Inhibition of the soluble guanylyl cyclase abolished the effect of L-arginine on glycinergic IPSCs but not on evoked monosynaptic EPSCs. Also, inhibition of protein kinase G blocked the increase in glycinergic sIPSCs by the cGMP analog 8-bromo-cGMP. The inhibitory effects of L-arginine on evoked EPSCs and high voltage-activated Ca(2+) channels expressed in HEK293 cells and dorsal root ganglion neurons were abolished by blocking the S-nitrosylation reaction with N-ethylmaleimide. Intrathecal injection of L-arginine and SNAP significantly increased mechanical nociceptive thresholds. Our findings suggest that spinal endogenous NO enhances inhibitory glycinergic input to dorsal horn neurons through sGC-cGMP-protein kinase G. Furthermore, NO reduces glutamate release from primary afferent terminals through S-nitrosylation of voltage-activated Ca(2+) channels. Both of these actions probably contribute to inhibition of nociceptive transmission by NO at the spinal level.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.