• Cochrane Db Syst Rev · Jan 2015

    Review Meta Analysis

    Exercise for osteoarthritis of the knee.

    • Marlene Fransen, Sara McConnell, Alison R Harmer, Martin Van der Esch, Milena Simic, and Kim L Bennell.
    • Faculty of Health Sciences, University of Sydney, Room 0212, Cumberland Campus C42, Sydney, New South Wales, Australia, 1825.
    • Cochrane Db Syst Rev. 2015 Jan 9; 1 (1): CD004376CD004376.

    BackgroundKnee osteoarthritis (OA) is a major public health issue because it causes chronic pain, reduces physical function and diminishes quality of life. Ageing of the population and increased global prevalence of obesity are anticipated to dramatically increase the prevalence of knee OA and its associated impairments. No cure for knee OA is known, but exercise therapy is among the dominant non-pharmacological interventions recommended by international guidelines.ObjectivesTo determine whether land-based therapeutic exercise is beneficial for people with knee OA in terms of reduced joint pain or improved physical function and quality of life.Search MethodsFive electronic databases were searched, up until May 2013.Selection CriteriaAll randomised controlled trials (RCTs) randomly assigning individuals and comparing groups treated with some form of land-based therapeutic exercise (as opposed to exercise conducted in the water) with a non-exercise group or a non-treatment control group.Data Collection And AnalysisThree teams of two review authors independently extracted data, assessed risk of bias for each study and assessed the quality of the body of evidence for each outcome using the GRADE (Grades of Recommendation, Assessment, Development and Evaluation) approach. We conducted analyses on continuous outcomes (pain, physical function and quality of life) immediately after treatment and on dichotomous outcomes (proportion of study withdrawals) at the end of the study; we also conducted analyses on the sustained effects of exercise on pain and function (two to six months, and longer than six months).Main ResultsIn total, we extracted data from 54 studies. Overall, 19 (20%) studies reported adequate random sequence generation and allocation concealment and adequately accounted for incomplete outcome data; we considered these studies to have an overall low risk of bias. Studies were largely free from selection bias, but research results may be vulnerable to performance and detection bias, as only four of the RCTs reported blinding of participants to treatment allocation, and, although most RCTs reported blinded outcome assessment, pain, physical function and quality of life were participant self-reported.High-quality evidence from 44 trials (3537 participants) indicates that exercise reduced pain (standardised mean difference (SMD) -0.49, 95% confidence interval (CI) -0.39 to -0.59) immediately after treatment. Pain was estimated at 44 points on a 0 to 100-point scale (0 indicated no pain) in the control group; exercise reduced pain by an equivalent of 12 points (95% CI 10 to 15 points). Moderate-quality evidence from 44 trials (3913 participants) showed that exercise improved physical function (SMD -0.52, 95% CI -0.39 to -0.64) immediately after treatment. Physical function was estimated at 38 points on a 0 to 100-point scale (0 indicated no loss of physical function) in the control group; exercise improved physical function by an equivalent of 10 points (95% CI 8 to 13 points). High-quality evidence from 13 studies (1073 participants) revealed that exercise improved quality of life (SMD 0.28, 95% CI 0.15 to 0.40) immediately after treatment. Quality of life was estimated at 43 points on a 0 to 100-point scale (100 indicated best quality of life) in the control group; exercise improved quality of life by an equivalent of 4 points (95% CI 2 to 5 points).High-quality evidence from 45 studies (4607 participants) showed a comparable likelihood of withdrawal from exercise allocation (event rate 14%) compared with the control group (event rate 15%), and this difference was not significant: odds ratio (OR) 0.93 (95% CI 0.75 to 1.15). Eight studies reported adverse events, all of which were related to increased knee or low back pain attributed to the exercise intervention provided. No study reported a serious adverse event.In addition, 12 included studies provided two to six-month post-treatment sustainability data on 1468 participants for knee pain and on 1279 (10 studies) participants for physical function. These studies indicated sustainability of treatment effect for pain (SMD -0.24, 95% CI -0.35 to -0.14), with an equivalent reduction of 6 (3 to 9) points on 0 to 100-point scale, and of physical function (SMD -0.15 95% CI -0.26 to -0.04), with an equivalent improvement of 3 (1 to 5) points on 0 to 100-point scale.Marked variability was noted across included studies among participants recruited, symptom duration, exercise interventions assessed and important aspects of study methodology. Individually delivered programmes tended to result in greater reductions in pain and improvements in physical function, compared to class-based exercise programmes or home-based programmes; however between-study heterogeneity was marked within the individually provided treatment delivery subgroup.Authors' ConclusionsHigh-quality evidence indicates that land-based therapeutic exercise provides short-term benefit that is sustained for at least two to six months after cessation of formal treatment in terms of reduced knee pain, and moderate-quality evidence shows improvement in physical function among people with knee OA. The magnitude of the treatment effect would be considered moderate (immediate) to small (two to six months) but comparable with estimates reported for non-steroidal anti-inflammatory drugs. Confidence intervals around demonstrated pooled results for pain reduction and improvement in physical function do not exclude a minimal clinically important treatment effect. Since the participants in most trials were aware of their treatment, this may have contributed to their improvement. Despite the lack of blinding we did not downgrade the quality of evidence for risk of performance or detection bias. This reflects our belief that further research in this area is unlikely to change the findings of our review.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…