• Respiratory care · Dec 2021

    Aerosol Generation and Mitigation During Methacholine Bronchoprovocation Testing: Infection Control Implications in the Era of COVID-19.

    • Yosuf W Subat, Matthew E Hainy, Keith D Torgerud, Pavol Sajgalik, Siva Kamal Guntupalli, Bruce D Johnson, Kim Chul-Ho, Kaiser G Lim, Scott A Helgeson, Paul D Scanlon, and Alexander S Niven.
    • Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota.
    • Respir Care. 2021 Dec 1; 66 (12): 185818651858-1865.

    BackgroundMethacholine bronchoprovocation or challenge testing (MCT) is commonly performed to assess airway hyper-responsiveness in the setting of suspected asthma. Nebulization is an aerosol-generating procedure, but little is known about the risks of MCT in the context of the ongoing coronavirus disease 2019 (COVID-19) pandemic. We aimed to quantify and characterize aerosol generation during MCT by using different delivery methods and to assess the impact of adding a viral filter.MethodsSeven healthy subjects performed simulated MCT in a near particle-free laboratory space with 4 different nebulizers and with a dosimeter. Two devices continuously sampled the ambient air during the procedure, which detected ultrafine particles, from 0.02-1 μm, and particles of sizes 0.3, 0.5, 1.0, 2.0, 5.0, and 10 µm, respectively. Particle generation was compared among all the devices, with and without viral filter placement.ResultsUltrafine-particle generation during simulated MCT was significant across all the devices. Ultrafine-particle (0.02-1 μm) concentrations decreased 77%-91% with the addition of a viral filter and varied significantly between unfiltered (P < .001) and filtered devices (P < .001). Ultrafine-particle generation was lowest when using the dosimeter with filtered Hudson nebulizer (1,258 ± 1,644 particle/mL). Ultrafine-particle concentrations with the filtered nebulizer devices using a compressor were higher than particle concentrations detected when using the dosimeter: Monaghan (3,472 ± 1,794 particles/mL), PARI (4,403 ± 2,948), Hudson (6,320 ± 1,787) and AirLife (9,523 ± 5,098).ConclusionsThe high particle concentrations generated during MCT pose significant infection control concerns during the COVID-19 pandemic. Particle generation during MCT was significantly reduced by using breath-actuated delivery and a viral filter, which offers an effective mitigation strategy.Copyright © 2021 by Daedalus Enterprises.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…