-
J Clin Monit Comput · Oct 2022
Performance of a machine-learning algorithm to predict hypotension in mechanically ventilated patients with COVID-19 admitted to the intensive care unit: a cohort study.
- Ward H van der Ven, Lotte E Terwindt, Nurseda Risvanoglu, Evy L K Ie, Marije Wijnberge, Denise P Veelo, Bart F Geerts, VlaarAlexander P JAPJ0000-0002-3453-7186Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands. a.p.vlaar@amsterdamumc.nl.Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, and Björn J P van der Ster.
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- J Clin Monit Comput. 2022 Oct 1; 36 (5): 1397-1405.
AbstractThe Hypotension Prediction Index (HPI) is a commercially available machine-learning algorithm that provides warnings for impending hypotension, based on real-time arterial waveform analysis. The HPI was developed with arterial waveform data of surgical and intensive care unit (ICU) patients, but has never been externally validated in the latter group. In this study, we evaluated diagnostic ability of the HPI with invasively collected arterial blood pressure data in 41 patients with COVID-19 admitted to the ICU for mechanical ventilation. Predictive ability was evaluated at HPI thresholds from 0 to 100, at incremental intervals of 5. After exceeding the studied threshold, the next 20 min were screened for positive (mean arterial pressure (MAP) < 65 mmHg for at least 1 min) or negative (absence of MAP < 65 mmHg for at least 1 min) events. Subsequently, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and time to event were determined for every threshold. Almost all patients (93%) experienced at least one hypotensive event. Median number of events was 21 [7-54] and time spent in hypotension was 114 min [20-303]. The optimal threshold was 90, with a sensitivity of 0.91 (95% confidence interval 0.81-0.98), specificity of 0.87 (0.81-0.92), PPV of 0.69 (0.61-0.77), NPV of 0.99 (0.97-1.00), and median time to event of 3.93 min (3.72-4.15). Discrimination ability of the HPI was excellent, with an area under the curve of 0.95 (0.93-0.97). This validation study shows that the HPI correctly predicts hypotension in mechanically ventilated COVID-19 patients in the ICU, and provides a basis for future studies to assess whether hypotension can be reduced in ICU patients using this algorithm.© 2021. The Author(s).
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.