• J Neurosurg Spine · May 2012

    Total motion generated in the unstable thoracolumbar spine during management of the typical trauma patient: a comparison of methods in a cadaver model.

    • Mark L Prasarn, Haitao Zhou, Dewayne Dubose, Gianluca Del Rossi, Bryan P Conrad, Marybeth Horodyski, and Glenn R Rechtine.
    • Department of Orthopaedic Surgery, University of Texas, Houston, TX 77030, USA. markprasarn@yahoo.com
    • J Neurosurg Spine. 2012 May 1;16(5):504-8.

    ObjectThe proper prehospital and inpatient management of patients with unstable spinal injuries is critical for prevention of secondary neurological compromise. The authors sought to analyze the amount of motion generated in the unstable thoracolumbar spine during various maneuvers and transfers that a trauma patient would typically be subjected to prior to definitive fixation.MethodsFive fresh cadavers with surgically created unstable L-1 burst fractures were tested. The amount of angular motion between the T-12 and L-2 vertebral segments was measured using a 3D electromagnetic motion analysis device. A complete sequence of maneuvers and transfers was then performed that a patient would be expected to go through from the time of injury until surgical fixation. These maneuvers and transfers included spine board placement and removal, bed transfers, lateral therapy, and turning the patient prone onto the operating table. During each of these, the authors performed what they believed to be the most commonly used versus the best techniques for preventing undesirable motion at the injury level.ResultsWhen placing a spine board there was more motion in all 3 planes with the log-roll technique, and this difference reached statistical significance for axial rotation (p = 0.018) and lateral bending (p = 0.003). Using logrolling for spine board removal resulted in increased motion again, and this was statistically significant for flexion-extension (p = 0.014). During the bed transfer and lateral therapy, the log-roll technique resulted in more motion in all 3 planes (p ≤ 0.05). When turning the cadavers prone for surgery there was statistically more angular motion in each plane for manually turning the patient versus the Jackson table turn (p ≤ 0.01). The total motion was decreased by almost 50% in each plane when using an alternative to the log-roll techniques during the complete sequence (p ≤ 0.007).ConclusionsAlthough it is unknown how much motion in the unstable spine is necessary to cause secondary neurological injury, the accepted tenet is to minimize motion as much as possible. This study has demonstrated the angular motion incurred by the unstable thoracolumbar spine as experienced by the typical trauma patient from the field to positioning in the operating room using the best and most commonly used techniques. As previously reported, using the log-roll technique consistently results in unwanted motion at the injured spinal segment.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.