• Magn Reson Med · Feb 2014

    Comparative Study

    High-resolution multishot spiral diffusion tensor imaging with inherent correction of motion-induced phase errors.

    • Trong-Kha Truong and Arnaud Guidon.
    • Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA.
    • Magn Reson Med. 2014 Feb 1; 71 (2): 790-6.

    PurposeTo develop and compare three novel reconstruction methods designed to inherently correct for motion-induced phase errors in multishot spiral diffusion tensor imaging without requiring a variable-density spiral trajectory or a navigator echo.Theory And MethodsThe first method simply averages magnitude images reconstructed with sensitivity encoding from each shot, whereas the second and third methods rely on sensitivity encoding to estimate the motion-induced phase error for each shot and subsequently use either a direct phase subtraction or an iterative conjugate gradient algorithm, respectively, to correct for the resulting artifacts. Numerical simulations and in vivo experiments on healthy volunteers were performed to assess the performance of these methods.ResultsThe first two methods suffer from a low signal-to-noise ratio or from residual artifacts in the reconstructed diffusion-weighted images and fractional anisotropy maps. In contrast, the third method provides high-quality, high-resolution diffusion tensor imaging results, revealing fine anatomical details such as a radial diffusion anisotropy in cortical gray matter.ConclusionThe proposed sensitivity encoding + conjugate gradient method can inherently and effectively correct for phase errors, signal loss, and aliasing artifacts caused by both rigid and nonrigid motion in multishot spiral diffusion tensor imaging, without increasing the scan time or reducing the signal-to-noise ratio.Copyright © 2013 Wiley Periodicals, Inc.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…