• Cochrane Db Syst Rev · Nov 2021

    Review Meta Analysis

    Interventions for altering blood pressure in people with acute subarachnoid haemorrhage.

    • Mathias Maagaard, William K Karlsson, Christian Ovesen, Christian Gluud, and Janus C Jakobsen.
    • Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
    • Cochrane Db Syst Rev. 2021 Nov 17; 11 (11): CD013096CD013096.

    BackgroundSubarachnoid haemorrhage has an incidence of up to nine per 100,000 person-years. It carries a mortality of 30% to 45% and leaves 20% dependent in activities of daily living. The major causes of death or disability after the haemorrhage are delayed cerebral ischaemia and rebleeding. Interventions aimed at lowering blood pressure may reduce the risk of rebleeding, while the induction of hypertension may reduce the risk of delayed cerebral ischaemia. Despite the fact that medical alteration of blood pressure has been clinical practice for more than three decades, no previous systematic reviews have assessed the beneficial and harmful effects of altering blood pressure (induced hypertension or lowered blood pressure) in people with acute subarachnoid haemorrhage.ObjectivesTo assess the beneficial and harmful effects of altering arterial blood pressure (induced hypertension or lowered blood pressure) in people with acute subarachnoid haemorrhage.Search MethodsWe searched the following from inception to 8 September 2020 (Chinese databases to 27 January 2019): Cochrane Stroke Group Trials register; CENTRAL; MEDLINE; Embase; five other databases, and five trial registries. We screened reference lists of review articles and relevant randomised clinical trials.Selection CriteriaRandomised clinical trials assessing the effects of inducing hypertension or lowering blood pressure in people with acute subarachnoid haemorrhage. We included trials irrespective of publication type, status, date, and language.Data Collection And AnalysisTwo review authors independently extracted data. We assessed the risk of bias of all included trials to control for the risk of systematic errors. We performed trial sequential analysis to control for the risks of random errors. We also applied GRADE. Our primary outcomes were death from all causes and death or dependency. Our secondary outcomes were serious adverse events, quality of life, rebleeding, delayed cerebral ischaemia, and hydrocephalus. We assessed all outcomes closest to three months' follow-up (primary point of interest) and maximum follow-up.Main ResultsWe included three trials: two trials randomising 61 participants to induced hypertension versus no intervention, and one trial randomising 224 participants to lowered blood pressure versus placebo. All trials were at high risk of bias. The certainty of the evidence was very low for all outcomes. Induced hypertension versus control Two trials randomised participants to induced hypertension versus no intervention. Meta-analysis showed no evidence of a difference between induced hypertension versus no intervention on death from all causes (risk ratio (RR) 1.60, 95% confidence interval (CI) 0.57 to 4.42; P = 0.38; I2 = 0%; 2 trials, 61 participants; very low-certainty evidence). Trial sequential analyses showed that we had insufficient information to confirm or reject our predefined relative risk reduction of 20% or more. Meta-analysis showed no evidence of a difference between induced hypertension versus no intervention on death or dependency (RR 1.29, 95% CI 0.78 to 2.13; P = 0.33; I2 = 0%; 2 trials, 61 participants; very low-certainty evidence). Trial sequential analyses showed that we had insufficient information to confirm or reject our predefined relative risk reduction of 20% or more. Meta-analysis showed no evidence of a difference between induced hypertension and control on serious adverse events (RR 2.24, 95% CI 1.01 to 4.99; P = 0.05; I2 = 0%; 2 trials, 61 participants; very low-certainty evidence). Trial sequential analysis showed that we had insufficient information to confirm or reject our predefined relative risk reduction of 20% or more. One trial (41 participants) reported quality of life using the Stroke Specific Quality of Life Scale. The induced hypertension group had a median of 47 points (interquartile range 35 to 55) and the no-intervention group had a median of 49 points (interquartile range 35 to 55). The certainty of evidence was very low. One trial (41 participants) reported rebleeding. Fisher's exact test (P = 1.0) showed no evidence of a difference between induced hypertension and no intervention on rebleeding. The certainty of evidence was very low. Trial sequential analysis showed that we had insufficient information to confirm or reject our predefined relative risk reduction of 20% or more. One trial (20 participants) reported delayed cerebral ischaemia. Fisher's exact test (P = 1.0) showed no evidence of a difference between induced hypertension and no intervention on delayed cerebral ischaemia. The certainty of the evidence was very low. Trial sequential analysis showed that we had insufficient information to confirm or reject our predefined relative risk reduction of 20% or more. None of the trials randomising participants to induced hypertension versus no intervention reported on hydrocephalus. No subgroup analyses could be conducted for trials randomising participants to induced hypertension versus no intervention. Lowered blood pressure versus control One trial randomised 224 participants to lowered blood pressure versus placebo. The trial only reported on death from all causes. Fisher's exact test (P = 0.058) showed no evidence of a difference between lowered blood pressure versus placebo on death from all causes. The certainty of evidence was very low.Authors' ConclusionsBased on the current evidence, there is a lack of information needed to confirm or reject minimally important intervention effects on patient-important outcomes for both induced hypertension and lowered blood pressure. There is an urgent need for trials assessing the effects of altering blood pressure in people with acute subarachnoid haemorrhage. Such trials should use the SPIRIT statement for their design and the CONSORT statement for their reporting. Moreover, such trials should use methods allowing for blinded altering of blood pressure and report on patient-important outcomes such as mortality, rebleeding, delayed cerebral ischaemia, quality of life, hydrocephalus, and serious adverse events.Copyright © 2021 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.