• Shock · Feb 2022

    Early Treatment With A Single Dose of Mesenchymal Stem Cell Derived Extracellular Vesicles Modulates The Brain Transcriptome to Create Neuroprotective Changes In A Porcine Model of Traumatic Brain Injury and Hemorrhagic Shock.

    • Ted Bambakidis, Simone E Dekker, Aaron M Williams, Ben E Biesterveld, Umar F Bhatti, Baoling Liu, Yongqing Li, Zachary Pickell, Benjamin Buller, and Hasan B Alam.
    • Department of Surgery, University of Michigan, Ann Arbor, Michigan.
    • Shock. 2022 Feb 1; 57 (2): 281290281-290.

    BackgroundCell-based therapies using mesenchymal stem cell derived extracellular vesicles (EVs) improve neurologic outcomes in animal models of traumatic brain injury (TBI), stroke, and hemorrhage. Using a porcine 7-day survival model of TBI and hemorrhagic shock (HS), we previously demonstrated that EV-treatment was associated with reduced brain lesion size, neurologic severity score, and cerebral inflammation. However, the underlying cellular and genomic mechanisms remain poorly defined. We hypothesize that EV treatment modulates the brain transcriptome to enhance neuroprotection and neurorestoration following TBI + HS.MethodsSwine were subjected to severe TBI (8-mm cortical impact) and HS (40% blood volume). After 1 h of shock, animals were randomized (n = 4/group) to treatment with either lactated Ringer's (LR) or LR + EV. Both groups received fluid resuscitation after 2 h of shock, and autologous packed red blood cells 5 h later.After 7-days, brains were harvested and RNA-sequencing was performed. The transcriptomic data were imported into the iPathway pipeline for bioinformatics analyses.Results5,273 genes were differentially expressed in the LR + EV group versus LR alone (total 9,588 measured genes). Genes with the greatest upregulation were involved in synaptic transmission and neuronal development and differentiation, while downregulated genes were involved in inflammation. GO-terms experiencing the greatest modulation were involved in inflammation, brain development, and cell adhesion. Pathway analysis revealed significant modulation in the glutamatergic and GABAergic systems. Network analysis revealed downregulation of inflammation, and upregulation of neurogenesis, and neuron survival and differentiation.ConclusionsIn a porcine model of TBI + HS, EV treatment was associated with an attenuation of cerebral inflammatory networks and a promotion of neurogenesis and neuroplasticity. These transcriptomic changes could explain the observed neuroprotective and neurorestorative properties associated with EV treatment.Copyright © 2021 by the Shock Society.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.