• Yonsei medical journal · Dec 2021

    Effective End-to-End Deep Learning Process in Medical Imaging Using Independent Task Learning: Application for Diagnosis of Maxillary Sinusitis.

    • Jang-Hoon Oh, Hyug-Gi Kim, Kyung Mi Lee, Chang-Woo Ryu, Soonchan Park, Ji Hye Jang, Hyun Seok Choi, and Eui Jong Kim.
    • Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea.
    • Yonsei Med. J. 2021 Dec 1; 62 (12): 112511351125-1135.

    PurposeThis study aimed to propose an effective end-to-end process in medical imaging using an independent task learning (ITL) algorithm and to evaluate its performance in maxillary sinusitis applications.Materials And MethodsFor the internal dataset, 2122 Waters' view X-ray images, which included 1376 normal and 746 sinusitis images, were divided into training (n=1824) and test (n=298) datasets. For external validation, 700 images, including 379 normal and 321 sinusitis images, from three different institutions were evaluated. To develop the automatic diagnosis system algorithm, four processing steps were performed: 1) preprocessing for ITL, 2) facial patch detection, 3) maxillary sinusitis detection, and 4) a localization report with the sinusitis detector.ResultsThe accuracy of facial patch detection, which was the first step in the end-to-end algorithm, was 100%, 100%, 99.5%, and 97.5% for the internal set and external validation sets #1, #2, and #3, respectively. The accuracy and area under the receiver operating characteristic curve (AUC) of maxillary sinusitis detection were 88.93% (0.89), 91.67% (0.90), 90.45% (0.86), and 85.13% (0.85) for the internal set and external validation sets #1, #2, and #3, respectively. The accuracy and AUC of the fully automatic sinusitis diagnosis system, including site localization, were 79.87% (0.80), 84.67% (0.82), 83.92% (0.82), and 73.85% (0.74) for the internal set and external validation sets #1, #2, and #3, respectively.ConclusionITL application for maxillary sinusitis showed reasonable performance in internal and external validation tests, compared with applications used in previous studies.© Copyright: Yonsei University College of Medicine 2021.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.