• Cochrane Db Syst Rev · Nov 2021

    Review

    Vaccines for measles, mumps, rubella, and varicella in children.

    • Carlo Di Pietrantonj, Alessandro Rivetti, Pasquale Marchione, Maria Grazia Debalini, and Vittorio Demicheli.
    • Servizio Regionale di Riferimento per l'Epidemiologia, SSEpi-SeREMI, Azienda Sanitaria Locale ASL AL, Alessandria, Italy.
    • Cochrane Db Syst Rev. 2021 Nov 22; 11 (11): CD004407CD004407.

    BackgroundMeasles, mumps, rubella, and varicella (chickenpox) are serious diseases that can lead to serious complications, disability, and death. However, public debate over the safety of the trivalent MMR vaccine and the resultant drop in vaccination coverage in several countries persists, despite its almost universal use and accepted effectiveness. This is an update of a review published in 2005 and updated in 2012.ObjectivesTo assess the effectiveness, safety, and long- and short-term adverse effects associated with the trivalent vaccine, containing measles, rubella, mumps strains (MMR), or concurrent administration of MMR vaccine and varicella vaccine (MMR+V), or tetravalent vaccine containing measles, rubella, mumps, and varicella strains (MMRV), given to children aged up to 15 years.Search MethodsWe searched the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2019, Issue 5), which includes the Cochrane Acute Respiratory Infections Group's Specialised Register, MEDLINE (1966 to 2 May 2019), Embase (1974 to 2 May 2019), the WHO International Clinical Trials Registry Platform (2 May 2019), and ClinicalTrials.gov (2 May 2019).Selection CriteriaWe included randomised controlled trials (RCTs), controlled clinical trials (CCTs), prospective and retrospective cohort studies (PCS/RCS), case-control studies (CCS), interrupted time-series (ITS) studies, case cross-over (CCO) studies, case-only ecological method (COEM) studies, self-controlled case series (SCCS) studies, person-time cohort (PTC) studies, and case-coverage design/screening methods (CCD/SM) studies, assessing any combined MMR or MMRV / MMR+V vaccine given in any dose, preparation or time schedule compared with no intervention or placebo, on healthy children up to 15 years of age.Data Collection And AnalysisTwo review authors independently extracted data and assessed the methodological quality of the included studies. We grouped studies for quantitative analysis according to study design, vaccine type (MMR, MMRV, MMR+V), virus strain, and study settings. Outcomes of interest were cases of measles, mumps, rubella, and varicella, and harms. Certainty of evidence of was rated using GRADE.Main ResultsWe included 138 studies (23,480,668 participants). Fifty-one studies (10,248,159 children) assessed vaccine effectiveness and 87 studies (13,232,509 children) assessed the association between vaccines and a variety of harms. We included 74 new studies to this 2019 version of the review. Effectiveness Vaccine effectiveness in preventing measles was 95% after one dose (relative risk (RR) 0.05, 95% CI 0.02 to 0.13; 7 cohort studies; 12,039 children; moderate certainty evidence) and 96% after two doses (RR 0.04, 95% CI 0.01 to 0.28; 5 cohort studies; 21,604 children; moderate certainty evidence). The effectiveness in preventing cases among household contacts or preventing transmission to others the children were in contact with after one dose was 81% (RR 0.19, 95% CI 0.04 to 0.89; 3 cohort studies; 151 children; low certainty evidence), after two doses 85% (RR 0.15, 95% CI 0.03 to 0.75; 3 cohort studies; 378 children; low certainty evidence), and after three doses was 96% (RR 0.04, 95% CI 0.01 to 0.23; 2 cohort studies; 151 children; low certainty evidence). The effectiveness (at least one dose) in preventing measles after exposure (post-exposure prophylaxis) was 74% (RR 0.26, 95% CI 0.14 to 0.50; 2 cohort studies; 283 children; low certainty evidence). The effectiveness of Jeryl Lynn containing MMR vaccine in preventing mumps was 72% after one dose (RR 0.24, 95% CI 0.08 to 0.76; 6 cohort studies; 9915 children; moderate certainty evidence), 86% after two doses (RR 0.12, 95% CI 0.04 to 0.35; 5 cohort studies; 7792 children; moderate certainty evidence). Effectiveness in preventing cases among household contacts was 74% (RR 0.26, 95% CI 0.13 to 0.49; 3 cohort studies; 1036 children; moderate certainty evidence).  Vaccine effectiveness against rubella, using a vaccine with the BRD2 strain which is only used in China, is 89% (RR 0.11, 95% CI 0.03 to 0.42; 1 cohort study; 1621 children; moderate certainty evidence).  Vaccine effectiveness against varicella (any severity) after two doses in children aged 11 to 22 months is 95% in a 10 years follow-up (rate ratio (rr) 0.05, 95% CI 0.03 to 0.08; 1 RCT; 2279 children; high certainty evidence). Safety There is evidence supporting an association between aseptic meningitis and MMR vaccines containing Urabe and Leningrad-Zagreb mumps strains, but no evidence supporting this association for MMR vaccines containing Jeryl Lynn mumps strains (rr 1.30, 95% CI 0.66 to 2.56; low certainty evidence). The analyses provide evidence supporting an association between MMR/MMR+V/MMRV vaccines (Jeryl Lynn strain) and febrile seizures. Febrile seizures normally occur in 2% to 4% of healthy children at least once before the age of 5. The attributable risk febrile seizures vaccine-induced is estimated to be from 1 per 1700 to 1 per 1150 administered doses. The analyses provide evidence supporting an association between MMR vaccination and idiopathic thrombocytopaenic purpura (ITP). However, the risk of ITP after vaccination is smaller than after natural infection with these viruses. Natural infection of ITP occur in 5 cases per 100,000 (1 case per 20,000) per year. The attributable risk is estimated about 1 case of ITP per 40,000 administered MMR doses. There is no evidence of an association between MMR immunisation and encephalitis or encephalopathy (rate ratio 0.90, 95% CI 0.50 to 1.61; 2 observational studies; 1,071,088 children; low certainty evidence), and autistic spectrum disorders (rate ratio 0.93, 95% CI 0.85 to 1.01; 2 observational studies; 1,194,764 children; moderate certainty). There is insufficient evidence to determine the association between MMR immunisation and inflammatory bowel disease (odds ratio 1.42, 95% CI 0.93 to 2.16; 3 observational studies; 409 cases and 1416 controls; moderate certainty evidence). Additionally, there is no evidence supporting an association between MMR immunisation and cognitive delay, type 1 diabetes, asthma, dermatitis/eczema, hay fever, leukaemia, multiple sclerosis, gait disturbance, and bacterial or viral infections.  AUTHORS' CONCLUSIONS: Existing evidence on the safety and effectiveness of MMR/MMRV vaccines support their use for mass immunisation. Campaigns aimed at global eradication should assess epidemiological and socioeconomic situations of the countries as well as the capacity to achieve high vaccination coverage. More evidence is needed to assess whether the protective effect of MMR/MMRV could wane with time since immunisation.Copyright © 2021 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.