• Cochrane Db Syst Rev · Nov 2021

    Review

    Growth hormone for in vitro fertilisation (IVF).

    • Akanksha Sood, Gadha Mohiyiddeen, Gaity Ahmad, Cheryl Fitzgerald, Andrew Watson, and Lamiya Mohiyiddeen.
    • Department of Obstetrics, Gynaecology and Reproductive Medicine, St. Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
    • Cochrane Db Syst Rev. 2021 Nov 22; 11 (11): CD000099CD000099.

    BackgroundIn an effort to improve outcomes of in vitro fertilisation (IVF) cycles, the use of growth hormone (GH) has been considered as adjuvant treatment in ovarian stimulation. Improving the outcomes of IVF is especially important for women with infertility who are considered 'poor responders'. We have compared the outcomes of IVF with adjuvant GH versus no adjuvant treatment in routine use, and specifically in poor responders.ObjectivesTo assess the effectiveness and safety of growth hormone as an adjunct to IVF compared to standard IVF for women with infertility SEARCH METHODS: We searched the following databases (to November 2020): Cochrane Gynaecology and Fertility (CGF) Group specialised register, CENTRAL, MEDLINE, Embase, CINAHL, Epistemonikos database and trial registers together with reference checking and contact with study authors and experts in the field to identify additional trials.Selection CriteriaWe included all randomised controlled trials (RCTs) of adjuvant GH treatment in IVF compared with no adjuvant treatment for women with infertility. We excluded trials where additional adjuvant treatments were used with GH. We also excluded trials comparing different IVF protocols.Data Collection And AnalysisWe used standard methodological procedures recommended by Cochrane. Two review authors independently performed assessment of trial risk of bias and extraction of relevant data. The primary review outcome was live birth rate. The secondary outcomes were clinical pregnancy rate, oocytes retrieved, embryo transfer, units of gonadotropin used and adverse events, i.e. ectopic pregnancy, multiple pregnancy, ovarian hyperstimulation syndrome (OHSS), congenital anomalies, oedema.Main ResultsWe included 16 RCTs (1352 women). Two RCTs (80 women) studied GH in routine use, and 14 RCTs (1272 women) studied GH in poor responders. The evidence was low to very low certainty, the main limitations being risk of bias, imprecision and heterogeneity. Adjuvant growth hormone compared to no adjuvant: routine use for in vitro fertilisation (IVF) The evidence is very uncertain about the effect of GH on live birth rate per woman randomised for routine use in IVF (odds ratio (OR) 1.32, 95% confidence interval (CI) 0.40 to 4.43; I2 = 0%; 2 trials, 80 participants; very low-certainty evidence). If the chance of live birth without adjuvant GH is assumed to be 15%, the chance of live birth with GH would be between 6% and 43%. There was insufficient evidence to reach a conclusion regarding clinical pregnancy rates per woman randomised, number of women with at least one oocyte retrieved per woman randomised and embryo transfer achieved per woman randomised; reported data were unsuitable for analysis. The evidence is very uncertain about the effect of GH on mean number of oocytes retrieved in normal responders (mean difference (MD) -0.02, 95% CI -0.79 to 0.74; I2 = 0%; 2 trials, 80 participants; very low-certainty evidence). The evidence is very uncertain about the effect of GH on mean units of gonadotropin used in normal responders (MD 13.57, 95% CI -112.88 to 140.01; I2 = 0%; 2 trials, 80 participants; very low-certainty evidence). We are uncertain of the effect of GH on adverse events in normal responders. Adjuvant growth hormone compared to no adjuvant: use in poor responders for in vitro fertilisation (IVF) The evidence is very uncertain about the effect of GH on live birth rate per woman randomised for poor responders (OR 1.77, 95% CI 1.17 to 2.70; I2 = 0%; 8 trials, 737 participants; very low-certainty evidence). If the chance of live birth without adjuvant GH is assumed to be 11%, the chance of live birth with GH would be between 13% and 25%. Adjuvant GH results in a slight increase in pregnancy rates in poor responders (OR 1.85, 95% CI 1.35 to 2.53; I2 = 15%; 11 trials, 1033 participants; low-certainty evidence). The results suggest, if the pregnancy rate without adjuvant GH is assumed to be 15%, with GH the pregnancy rate in poor responders would be between 19% and 31%. The evidence suggests that GH results in little to no difference in number of women with at least one oocyte retrieved (OR 5.67, 95% CI 1.54 to 20.83; I2 = 0%; 2 trials, 148 participants; low-certainty evidence). If the chance of retrieving at least one oocyte in poor responders was 81%, with GH the chance is between 87% and 99%. There is a slight increase in mean number of oocytes retrieved with the use of GH for poor responders (MD 1.40, 95% CI 1.16 to 1.64; I2 = 87%; 12 trials, 1153 participants; low-certainty evidence). The evidence is very uncertain about the effect of GH on embryo transfer achieved (OR 2.32, 95% CI 1.08 to 4.96; I2 = 25%; 4 trials, 214 participants; very low-certainty evidence). If the chance of achieving embryo transfer is assumed to be 77%, the chance with GH will be 78% to 94%. Use of GH results in reduction of mean units of gonadotropins used for stimulation in poor responders (MD -1088.19, 95% CI -1203.20 to -973.18; I2 = 91%; 8 trials, 685 participants; low-certainty evidence). High heterogeneity in the analyses for mean number of oocytes retrieved and units of GH used suggests quite different effects according to differences including in trial protocols (populations, GH dose and schedule), so these results should be interpreted with caution. We are uncertain of the effect of GH on adverse events in poor responders as six of the 14 included trials failed to report this outcome.Authors' ConclusionsThe use of adjuvant GH in IVF treatment protocols has uncertain effect on live birth rates and mean number of oocytes retrieved in normal responders. However, it slightly increases the number of oocytes retrieved and pregnancy rates in poor responders, while there is an uncertain effect on live birth rates in this group. The results however, need to be interpreted with caution, as the included trials were small and few in number, with significant bias and imprecision. Also, the dose and regimen of GH used in trials was variable. Therefore, further research is necessary to fully define the role of GH as adjuvant therapy in IVF.Copyright © 2021 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…