• J Clin Monit Comput · Oct 2022

    Opal: an implementation science tool for machine learning clinical decision support in anesthesia.

    • Andrew Bishara, Andrew Wong, Linshanshan Wang, Manu Chopra, Wudi Fan, Alan Lin, Nicholas Fong, Aditya Palacharla, Jon Spinner, Rachelle Armstrong, Mark J Pletcher, Dmytro Lituiev, Dexter Hadley, and Atul Butte.
    • Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, 550 16th St., San Francisco, CA, 94158, USA. andrew.bishara@ucsf.edu.
    • J Clin Monit Comput. 2022 Oct 1; 36 (5): 136713771367-1377.

    AbstractOpal is the first published example of a full-stack platform infrastructure for an implementation science designed for ML in anesthesia that solves the problem of leveraging ML for clinical decision support. Users interact with a secure online Opal web application to select a desired operating room (OR) case cohort for data extraction, visualize datasets with built-in graphing techniques, and run in-client ML or extract data for external use. Opal was used to obtain data from 29,004 unique OR cases from a single academic institution for pre-operative prediction of post-operative acute kidney injury (AKI) based on creatinine KDIGO criteria using predictors which included pre-operative demographic, past medical history, medications, and flowsheet information. To demonstrate utility with unsupervised learning, Opal was also used to extract intra-operative flowsheet data from 2995 unique OR cases and patients were clustered using PCA analysis and k-means clustering. A gradient boosting machine model was developed using an 80/20 train to test ratio and yielded an area under the receiver operating curve (ROC-AUC) of 0.85 with 95% CI [0.80-0.90]. At the default probability decision threshold of 0.5, the model sensitivity was 0.9 and the specificity was 0.8. K-means clustering was performed to partition the cases into two clusters and for hypothesis generation of potential groups of outcomes related to intraoperative vitals. Opal's design has created streamlined ML functionality for researchers and clinicians in the perioperative setting and opens the door for many future clinical applications, including data mining, clinical simulation, high-frequency prediction, and quality improvement.© 2021. The Author(s).

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.