-
- Jiyoung Yoon, Young Joo Suh, Kyunghwa Han, Hyoun Cho, Hye-Jeong Lee, Jin Hur, and Byoung Wook Choi.
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
- Thorac Cancer. 2020 Apr 1; 11 (4): 993-1004.
BackgroundWe aimed to assess if quantitative radiomic features can predict programmed death ligand 1 (PD-L1) expression in advanced stage lung adenocarcinoma.MethodsThis retrospective study included 153 patients who had advanced stage (>IIIA by TNM classification) lung adenocarcinoma with pretreatment thin section computed tomography (CT) images and PD-L1 expression test results in their pathology reports. Clinicopathological data were collected from electronic medical records. Visual analysis and radiomic feature extraction of the tumor from pretreatment CT were performed. We constructed two models for multivariate logistic regression analysis (one based on clinical variables, and the other based on a combination of clinical variables and radiomic features), and compared c-statistics of the receiver operating characteristic curves of each model to identify the model with the higher predictability.ResultsAmong 153 patients, 53 patients were classified as PD-L1 positive and 100 patients as PD-L1 negative. There was no significant difference in clinical characteristics or imaging findings on visual analysis between the two groups (P > 0.05 for all). Rad-score by radiomic analysis was higher in the PD-L1 positive group than in the PD-L1 negative group with a statistical significance (-0.378 ± 1.537 vs. -1.171 ± 0.822, P = 0.0008). A prediction model that uses clinical variables and CT radiomic features showed higher performance compared to a prediction model that uses clinical variables only (c-statistic = 0.646 vs. 0.550, P = 0.0299).ConclusionsQuantitative CT radiomic features can predict PD-L1 expression in advanced stage lung adenocarcinoma. A prediction model composed of clinical variables and CT radiomic features may facilitate noninvasive assessment of PD-L1 expression.Key PointsSignificant findings of the study Quantitative CT radiomic features can help predict PD-L1 expression, whereas none of the qualitative imaging findings is associated with PD-L1 positivity. What this study adds A prediction model composed of clinical variables and CT radiomic features may facilitate noninvasive assessment of PD-L1 expression.© 2020 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.