-
Cardiovascular research · Nov 2015
Phosphoinositide 3-kinase gamma controls inflammation-induced myocardial depression via sequential cAMP and iNOS signalling.
- Bernadin Ndongson-Dongmo, Regine Heller, Dirk Hoyer, Michael Brodhun, Michael Bauer, Johannes Winning, Emilio Hirsch, Reinhard Wetzker, Peter Schlattmann, and Reinhard Bauer.
- Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, Hans-Knöll-Straße 2, D-07745 Jena, Germany Integrated Research and Treatment Center, Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany.
- Cardiovasc. Res. 2015 Nov 1; 108 (2): 243-53.
AimsSepsis-induced myocardial depression (SIMD), an early and frequent event of infection-induced systemic inflammatory response syndrome (SIRS), is characterized by reduced contractility irrespective of enhanced adrenergic stimulation. Phosphoinositide-3 kinase γ (PI3Kγ) is known to prevent β-adrenergic overstimulation via its scaffold function by activating major cardiac phosphodiesterases and restricting cAMP levels. However, the role of PI3Kγ in SIRS-induced myocardial depression is unknown. This study is aimed at determining the specific role of lipid kinase-dependent and -independent functions of PI3Kγ in the pathogenesis of SIRS-induced myocardial depression.Methods And ResultsPI3Kγ knockout mice (PI3Kγ(-/-)), mice expressing catalytically inactive PI3Kγ (PI3Kγ(KD/KD)), and wild-type mice (P3Kγ(+/+)) were exposed to lipopolysaccharide (LPS)-induced systemic inflammation and assessed for survival, cardiac autonomic nervous system function, and left ventricular performance. Additionally, primary adult cardiomyocytes were used to analyse PI3Kγ effects on myocardial contractility and inflammatory response. SIRS-induced adrenergic overstimulation induced a transient hypercontractility state in PI3Kγ(-/-) mice, followed by reduced contractility. In contrast, P3Kγ(+/+) mice and PI3Kγ(KD/KD) mice developed an early and ongoing myocardial depression despite exposure to similarly increased catecholamine levels. Compared with cells from P3Kγ(+/+) and PI3Kγ(KD/KD) mice, cardiomyocytes from PI3Kγ(-/-) mice showed an enhanced and prolonged cAMP-mediated signalling upon norepinephrine and an intensified LPS-induced proinflammatory response characterized by nuclear factor of activated T-cells-mediated inducible nitric oxide synthase up-regulation.ConclusionsThis study reveals the lipid kinase-independent scaffold function of PI3Kγ as a mediator of SIMD during inflammation-induced SIRS. Activation of cardiac phosphodiesterases via PI3Kγ is shown to restrict myocardial hypercontractility early after SIRS induction as well as the subsequent inflammatory responses.Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.